Skip to main content

Advertisement

Log in

α-Synuclein Protects Neurons from Apoptosis Downstream of Free-Radical Production Through Modulation of the MAPK Signalling Pathway

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

α-Synuclein is a pre-synaptic chaperone and its accumulation contributes to differential cell loss in Parkinson’s disease. Cytoplasmic expression of α-synuclein can directly modulate apoptotic pathways and contribute to cell survival, whereas induced over-expression of the protein causes oxidative stress through mitochondrial and cytosolic free-radical production. This study aimed to clarify the contribution of endogenous α-synuclein to oxidative stress and its association with cell death. Primary cortical neurons were derived from α-synuclein knock-out (Snca-/-) and wild-type (C57BL/6; WT) mice and treated with in vitro models of oxidative-stress, complex I inhibition and excitotoxicity. Mitochondrial free radical production was determined in isolated mitochondria derived from each mouse strain. Snca-/- derived cortical cultures were more susceptible (P < 0.05) to oxidative-stress, but not excitotoxicity. This result was determined by significant increases in cell death (Propidium-Iodide staining) after 6 h treatment in Snca-/- (45 % ± 2.7 SEM), relative to WT (33 % ± 3.9 SEM) cultures. α-Synuclein also confers significant (P < 0.05) resistance to low-dose (5 nM) rotenone toxicity, with a twofold reduction in cell death in WT, compared with Snca-/- cortical neurons. The expression of α-synuclein had no effect on cortical glutathione levels, or the production of reactive oxygen intermediates in isolated mitochondria. These data indicate that endogenous levels of α-synuclein confer resistance to oxidative stress downstream of free radical production and scavenging. The current data suggest that α-synuclein prevents cytochrome c release and apoptosis through inhibition of the MAPK signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves Da Costa C, Paitel E, Vincent B, Checler F (2002) α-synuclein lowers p53-dependent apoptotic response of neuronal cells. Abolishment by 6-hydroxydopamine and implication for Parkinson’s disease. J Biol Chem 277(52):50980–50984

    Article  PubMed  CAS  Google Scholar 

  • Alves Da Costa C, Dunys J, Brau F, Wilk S, Cappai R, Checler F (2006) 6-Hydroxydopamine but not 1-methyl-4-phenylpyridinium abolishes α-synuclein anti-apoptotic phenotype by inhibiting its proteasomal degradation and by promoting its aggregation. J Biol Chem 281(14):9824–9831

    Article  PubMed  CAS  Google Scholar 

  • Avery S (2011) Molecular targets of oxidative stress. Biochem J 434(2):201–210

    Article  PubMed  CAS  Google Scholar 

  • Bayir H, Kapralov AA, Jiang J, Huang Z, Tyurina YY, Tyurin VA, Zhao Q, Belikova NA, Vlasova II, Maeda A, Zhu J, Na HM, Mastroberardino PG, Sparvero LJ, Amoscato AA, Chu CT, Greenamyre JT, Kagan VE (2009) Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome C: protection against apoptosis versus delayed oxidative stress in Parkinson disease. J Biol Chem 284:15951–15969

    Article  PubMed  CAS  Google Scholar 

  • Bekris LM, Mata IF, Zabetian CP (2010) The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 23(4):228–242

    Article  PubMed  Google Scholar 

  • Cain K (2003) Chemical-Induced Apoptosis: Formation of the Apaf-1 Apoptosome. Drug Met Rev 35(4):337–363

    Article  CAS  Google Scholar 

  • Choi WS, Palmiter RD, Xia Z (2011) Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol 192(5):873–882

    Article  PubMed  CAS  Google Scholar 

  • Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S (2006) α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313(5785):324–328

    Article  PubMed  CAS  Google Scholar 

  • da Costa CA, Ancolio K, Checler F (2000) Wild-type but not Parkinson’s disease-related ala-53-Thr mutant α-synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem 275(31):24065–24069

    Article  PubMed  Google Scholar 

  • Damiano M, Starkov A, Petri S, Kipiani K, Kiaei M, Mattiazzi M, Flint Beal M, Manfredi G (2006) Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J Neurochem 96(5):1349–1361

    Article  PubMed  CAS  Google Scholar 

  • Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K, Schmitz Y, Yuan CA, Rocha M, Jackson-Lewis V, Hersch S, Sulzer D, Przedborski S, Burke R, Hen R (2002) Resistance of α-synuclein null mice to the Parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99(22):14524–14529

    Article  PubMed  CAS  Google Scholar 

  • Davey GP, Peuchen S, Clark JB (1998) Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem 273(21):12753–12757

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Wang X, Sarell CJ, Drewett A, Marken F, Viles JH, Brown DR (2010) The synucleins are a family of redox-active copper binding proteins. Biochemistry [Epub ahead of print]

  • Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100

    Article  PubMed  CAS  Google Scholar 

  • Ebrahim A, Ko L, Yen S (2010) Reduced expression of peroxisome-proliferator activated receptor gamma coactivator-1α enhances α-synuclein oligomerization and down regulates AKT/GSK3beta signaling pathway in human neuronal cells that inducibly express α-synuclein. Neurosci Lett 473(2):120–125

    Article  PubMed  CAS  Google Scholar 

  • Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barceló-Coblijn GC, Nussbaum RL (2005) Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking α-synuclein. Mol Cell Biol 25(22):10190–10201

    Article  PubMed  CAS  Google Scholar 

  • Fountaine T, Venda L, Warrick N, Christian H, Brundin P, Channon K, Wade-Martins R (2008) The effect of α-synuclein knockdown on MPP+ toxicity in models of human neurons. Eur J Neurosci 28(12):2459–2473

    Article  PubMed  Google Scholar 

  • Gloeckner C, Kinkl N, Schumacher A, Braun RJ, O’Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M (2006) The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 15(2):223–232

    Article  PubMed  CAS  Google Scholar 

  • Gloeckner C, Schumacher A, Boldt K, Ueffing M (2009) The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 109(4):959–968

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E (1999) Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J Biol Chem 274(41):28849–28852

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Hsu LJ, Rockenstein E, Takenouchi T, Mallory M, Masliah E (2002) α-Synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J Biol Chem 277(13):11465–11472

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Takenouchi T, Rockenstein E, Masliah E (2003) α-Synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase activity in B103 neuroblastoma cells: role in the pathogenesis of Parkinson’s disease. J Neurochem 85(6):1468–1479

    Article  PubMed  CAS  Google Scholar 

  • Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) α-Synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157(2):401–410

    Article  PubMed  CAS  Google Scholar 

  • Ito G, Okai T, Fujino G, Takeda K, Ichijo H, Katada T, Iwatsubo T (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry 46(5):1380–1388

    Article  PubMed  CAS  Google Scholar 

  • Iwata A, Maruyama M, Kanazawa I, Nukina N (2001) α-Synuclein affects the MAPK pathway and accelerates cell death. J Biol Chem 276(48):45320–45329

    Article  PubMed  CAS  Google Scholar 

  • Kaul S, Anantharam V, Kanthasamy A, Kanthasamy AG (2005) Wild-type α-synuclein interacts with pro-apoptotic proteins PKCdelta and BAD to protect dopaminergic neuronal cells against MPP+-induced apoptotic cell death. Brain Res Mol Brain Res 139(1):137–152

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Lee S (2008) Controlling the mass action of α-synuclein in Parkinson’s disease. J Neurochem 107(2):303–316

    Article  PubMed  CAS  Google Scholar 

  • Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante RJ, Kowall NW, Abeliovich A, Beal MF (2006) Mice lacking α-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 21(3):541–548

    Article  PubMed  CAS  Google Scholar 

  • Kristian T (2010) Isolation of mitochondria from the CNS. Curr Protoc Neurosci Chapter 7:Unit 7.22. doi:10.1002/0471142301.ns0722s52

  • Leist M, Nicotera P (1998) Apoptosis, excitotoxicity, and neuropathology. Exp Cell Res 239(2):183–201

    Article  PubMed  CAS  Google Scholar 

  • Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein. J Biol Chem 277(3):1641–1644

    Article  PubMed  CAS  Google Scholar 

  • Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA (2003) α-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 23(8):3095–3099

    PubMed  CAS  Google Scholar 

  • Monti B, Polazzi E, Batti L, Crochemore C, Virgili M, Contestabile A (2007) α-synuclein protects cerebellar granule neurons against 6-hydroxydopamine-induced death. J Neurochem 103(2):518–530

    Article  PubMed  CAS  Google Scholar 

  • Musgrove RE, King AE, Dickson TC (2010) Neuroprotective upregulation of endogenous α-synuclein precedes ubiquitination in cultured dopaminergic neurons. Neurotox Res 19(4):592–602

    Article  PubMed  Google Scholar 

  • Navarro A, Boveris A, Bandez MJ, Sanchez-Pino MJ, Gomez C, Muntane G, Ferrer I (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radic Biol Med 46(12):1574–1580

    Article  PubMed  CAS  Google Scholar 

  • Neame SJ, Whitfield J, Ham J (2004) Immunocytochemical techniques for studying apoptosis in primary sympathetic neurons. Methods Mol Biol 282:169–177

    PubMed  CAS  Google Scholar 

  • Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79

    Article  PubMed  CAS  Google Scholar 

  • Onyango IG (2008) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 33(3):589–597

    Article  PubMed  CAS  Google Scholar 

  • Opazo P, Watabe AM, Grant SG, O’Dell TJ (2003) Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci 23(9):3679–3688

    PubMed  CAS  Google Scholar 

  • Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) α-Synuclein shares physical and functional homology with 14–3-3 proteins. J Neurosci 19(14):5782–5791

    PubMed  CAS  Google Scholar 

  • Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008) Mitochondrial association of α-synuclein causes oxidative stress. Cell Mol Life Sci 65(7–8):1272–1284

    Article  PubMed  CAS  Google Scholar 

  • Parker WD, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218

    Article  PubMed  CAS  Google Scholar 

  • Quilty MC, King AE, Gai WP, Pountney DL, West AK, Vickers JC, Dickson TC (2006) α-synuclein is upregulated in neurones in response to chronic oxidative stress and is associated with neuroprotection. Exp Neurol 199(2):249–256

    Article  PubMed  CAS  Google Scholar 

  • Rappley I, Myers D, Milne S, Ivanova P, Lavoie M, Brown HA, Selkoe D (2009) Lipidomic profiling in mouse brain reveals differences between ages and genders, with smaller changes associated with α-synuclein genotype. J Neurochem 111(1):15–25

    Article  PubMed  CAS  Google Scholar 

  • Rogers A, Schmuck G, Scholz G, Williams DC (2004) c-fos mRNA expression in rat cortical neurons during glutamate-mediated excitotoxicity. Toxicol Sci 82(2):562–569

    Article  PubMed  CAS  Google Scholar 

  • Saha AR, Ninkina NN, Hanger DP, Anderton BH, Davies AM, Buchman VL (2000) Induction of neuronal death by α-synuclein. Eur J Neurosci 12(8):3073–3077

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Gonzalez-Zulueta M, Huang H, Herring WJ, Ahn S, Ginty DD, Dawson VL, Dawson TM (2000) Dynamic regulation of neuronal NO synthase transcription by calcium influx through a CREB family transcription factor-dependent mechanism. Proc Natl Acad Sci USA 97(15):8617–8622

    Google Scholar 

  • Seo JH, Rah JC, Choi SH, Shin JK, Min K, Kim HS, Park CH, Kim S, Kim EM, Lee SH, Lee S, Suh SW, Suh YH (2002) α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J 16(13):1826–1828

    PubMed  CAS  Google Scholar 

  • Seo D, Lopez-Meraz M, Allen S, Wasterlain C, Niquet J (2009) Contribution of a mitochondrial pathway to excitotoxic neuronal necrosis. J Neurosci Res 87(9):2087–2094

    Article  PubMed  CAS  Google Scholar 

  • Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756

    PubMed  CAS  Google Scholar 

  • Surmeier DJ (2010) α-Synuclein at the synaptic gate. Neuron 65(1):3–4

    Article  PubMed  CAS  Google Scholar 

  • Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S (2000) α-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 74(2):721–729

    Article  PubMed  CAS  Google Scholar 

  • Whiteman M, Dogra Y, Winyard P, Armstrong J (2009) Detection and measurement of reactive oxygen intermediates in mitochondria and cells. Methods Mol Biol 476:28–49

    Article  Google Scholar 

  • Yuan Y, Sun J, Zhao M, Hu J, Wang X, Du G, Chen NH (2010) Overexpression of α-Synuclein Down-Regulates BDNF Expression. Cell Mol Neurobiol 30(6):939–946

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Dr Rob Gasperini for his assistance with mitochondrial isolation and function assays. This study was funded by National Health and Medical Research Council (NHMRC), NHMRC Career Development Award and Select Foundation Fellowship to TD, Wicking Dementia Research and Education Centre, Motor Neuron Disease Research Institute of Australia Bill Gole Fellowship and Alzheimer’s Association of Australia Fellowship to AK. Laser Scanning microscopy was performed on a Leica LSM 510, provided by the Central Science Laboratory (CSL) of the University of Tasmania.

Conflict of interests

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey C. Dickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musgrove, R.E.J., King, A.E. & Dickson, T.C. α-Synuclein Protects Neurons from Apoptosis Downstream of Free-Radical Production Through Modulation of the MAPK Signalling Pathway. Neurotox Res 23, 358–369 (2013). https://doi.org/10.1007/s12640-012-9352-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9352-5

Keywords

Navigation