Skip to main content

Advertisement

Log in

Oxidative Damage to RNA in Aging and Neurodegenerative Disorders

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

An age-associated increase in oxidative damage to nucleic acids, predominantly to RNA, has been recently demonstrated in neurons of human and rodent brains, which may play a fundamental role in the development of age-associated neurodegeneration. Indeed, more prominent levels of neuronal RNA oxidation compared to normal aging have been described in neurodegenerative disorders including Alzheimer disease, Parkinson disease, dementia with Lewy bodies, and amyotrophic lateral sclerosis. Moreover, oxidative damage to RNA has been found also in cellular and animal model of neurodegeneration. Oxidative RNA modification can occur not only in protein-coding RNAs but also in non-coding RNAs that are recently revealed to contribute towards the complexity of the mammalian brain. It has been hypothesized that RNA oxidation causes aberrant expression of microRNAs and proteins and subsequently initiates inappropriate cell fate pathways. While less lethal than mutations in the genome and not inheritable, such sublethal damage to cells might be associated with underlying mechanisms of degeneration, especially age-associated neurodegeneration. Of particular interest, the accumulating evidence obtained from studies on either human samples or experimental models coincidentally suggests that RNA oxidation is a feature in neurons of aging brain and more prominently observed in vulnerable neurons at early-stage of age-associated neurodegenerative disorders, indicating that RNA oxidation actively contributes to the background, the onset, and the development of the disorders. Further investigations aimed at understanding of the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative disorders and lead to better therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aas PA, Otterlei M, Falnes PO et al (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421:859–863

    Article  PubMed  CAS  Google Scholar 

  • Abe T, Tohgi H, Isobe C, Murata T, Sato C (2002) Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer’s disease. J Neurosci Res 70:447–450

    Article  PubMed  CAS  Google Scholar 

  • Abe T, Isobe C, Murata T, Sato C, Tohgi H (2003) Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson’s disease. Neurosci Lett 336:105–108

    Article  PubMed  CAS  Google Scholar 

  • Aluise CD, Robinson RA, Beckett TL et al (2010) Preclinical Alzheimer disease; brain oxidative stress, Aβ peptide and proteomics. Neurobiol Dis 39:221–228

    Article  PubMed  CAS  Google Scholar 

  • Aluise CD, Robinson RA, Cai J, Pierce WM, Markesbery WR, Butterfield DA (2011) Redox proteomics analysis of brains from subjects with amnestic mild cognitive impairment compared to brains from subjects with preclinical Alzheimer’s disease; insights into memory loss in MCI. J Alzheimers Dis 23:257–269

    PubMed  CAS  Google Scholar 

  • Ames BN, Gold LS (1991) Endogenous mutagens and the causes of aging and cancer. Mutat Res 250:3–16

    Article  PubMed  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25

    Article  PubMed  Google Scholar 

  • Andreoli R, Mutti A, Goldoni M, Manini P, Apostoli P, De Palma G (2011) Reference ranges of urinary biomarkers of oxidized guanine in (2′-deoxy)ribonucleotides and nucleic acids. Free Radic Biol Med 50:254–261

    Article  PubMed  CAS  Google Scholar 

  • Barber SC, Mead RJ, Shaw PJ (2006) Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 1762:1051–1067

    Article  PubMed  CAS  Google Scholar 

  • Barciszewski J, Barciszewska MZ, Siboska G, Rattan SI, Clark BF (1999) Some unusual nucleic acid bases are products of hydroxyl radical oxidation of DNA and RNA. Mol Biol Rep 26:231–238

    Article  PubMed  CAS  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  PubMed  CAS  Google Scholar 

  • Bellacosa A, Moss EG (2003) RNA repair: damage control. Curr Biol 13:R482–R484

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Roggendorf W, Schroder U et al (2002) Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 59:999–1005

    Article  PubMed  Google Scholar 

  • Bradley MA, Markesbery WR, Lovell MA (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 48:1570–1576

    Article  PubMed  CAS  Google Scholar 

  • Brégeon D, Sarasin A (2005) Hypothetical role of RNA damage avoidance in preventing human disease. Mutat Res 577:293–302

    Article  PubMed  CAS  Google Scholar 

  • Broedbaek K, Poulsen HE, Weimann A et al (2009) Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis. Free Radic Biol Med 47:1230–1233

    Article  PubMed  CAS  Google Scholar 

  • Broedbaek K, Siersma V, Henriksen T et al (2011) Urinary markers of nucleic acid oxidation and long-term mortality of newly diagnosed type 2 diabetic patients. Diabetes Care 34:2594–2596

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Reed TT, Perluigi M et al (2007) Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res 1148:243–248

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Dinkova-Kostova AT et al (2012) Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 1822:753–783

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH (2006) Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29:77–103

    Article  PubMed  CAS  Google Scholar 

  • Casadesus G, Smith MA, Basu S et al (2007) Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease. Mol Neurodegener 2:2

    Article  PubMed  CAS  Google Scholar 

  • Castellani RJ, Harris PL, Sayre LM et al (2001) Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Free Radic Biol Med 31:175–180

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Kong Q, Shan X et al (2008) Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS ONE 3:e2849

    Article  PubMed  CAS  Google Scholar 

  • Che Y, Wang JF, Shao L, Young T (2010) Oxidative damage to RNA but not DNA in the hippocampus of patients with major mental illness. J Psychiatry Neurosci 35:296–302

    Article  PubMed  Google Scholar 

  • Cooke MS, Olinski R, Evans MD (2006) Does measurement of oxidative damage to DNA have clinical significance? Clin Chim Acta 365:30–49

    Article  PubMed  CAS  Google Scholar 

  • Costa FF (2005) Non-coding RNAs: new players in eukaryotic biology. Gene 357:83–94

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Hofer T, Rani A, Leeuwenburgh C, Foster TC (2009) Comparison of lifelong and late life exercise on oxidative stress in the cerebellum. Neurobiol Aging 30:903–909

    Article  PubMed  CAS  Google Scholar 

  • Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34:659–666

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Dimayuga E, Markesbery WR, Keller JN (2004) Proteasome inhibition increases DNA and RNA oxidation in astrocyte and neuron cultures. J Neurochem 91:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Markesbery WR, Chen Q, Li F, Keller JN (2005) Ribosome dysfunction is an early event in Alzheimer’s disease. J Neurosci 25:9171–9175

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Markesbery WR, Cecarini V, Keller JN (2006) Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer’s disease. Neurochem Res 31:705–710

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Cecarini V, Keller JN (2007) Interplay between protein synthesis and degradation in the CNS: physiological and pathological implications. Trends Neurosci 30:31–36

    Article  PubMed  CAS  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61

    Article  PubMed  CAS  Google Scholar 

  • Fiala ES, Conaway CC, Mathis JE (1989) Oxidative DNA and RNA damage in the livers of Sprague-Dawley rats treated with the hepatocarcinogen 2-nitropropane. Cancer Res 49:5518–5522

    PubMed  CAS  Google Scholar 

  • Foksinski M, Rozalski R, Guz J et al (2004) Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life spans of different mammalian species. Free Radic Biol Med 37:1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Furuta A, Iida T, Nakabeppu Y, Iwaki T (2001) Expression of hMTH1 in the hippocampi of control and Alzheimer’s disease. NeuroReport 12:2895–2899

    Article  PubMed  CAS  Google Scholar 

  • Gemma C, Vila J, Bachstetter A, Bickford PC (2007) Oxidative stress and the aging brain: from theory to prevention, Chapter 15. In: Riddle DR (ed) Brain aging: models, methods, and mechanisms. CRC Press, Boca Raton, FL

    Google Scholar 

  • Gong X, Tao R, Li Z (2006) Quantification of RNA damage by reverse transcription polymerase chain reactions. Anal Biochem 357:58–67

    Article  PubMed  CAS  Google Scholar 

  • Görg B, Qvartskhava N, Keitel V et al (2008) Ammonia induces RNA oxidation in cultured astrocytes and brain in vivo. Hepatology 48:567–579

    Article  PubMed  CAS  Google Scholar 

  • Görg B, Qvartskhava N, Bidmon HJ et al (2010) Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. Hepatology 52:256–265

    Article  PubMed  CAS  Google Scholar 

  • Gu G, Reyes PE, Golden GT et al (2002) Mitochondrial DNA deletions/rearrangements in Parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 61:634–639

    PubMed  CAS  Google Scholar 

  • Guentchev M, Siedlak SL, Jarius C et al (2002) Oxidative damage to nucleic acids in human prion disease. Neurobiol Dis 9:275–281

    Article  PubMed  CAS  Google Scholar 

  • Guidi I, Galimberti D, Lonati S et al (2006) Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 27:262–269

    Article  PubMed  CAS  Google Scholar 

  • Gurney ME, Pu H, Chiu AY et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa H, Sekiguchi M (2006) Human polynucleotide phosphorylase protein in response to oxidative stress. Biochemistry (Mosc) 45:6749–6755

    Article  CAS  Google Scholar 

  • Hayakawa H, Hofer A, Thelander L et al (1999) Metabolic fate of oxidized guanine ribonucleotides in mammalian cells. Biochemistry (Mosc) 38:3610–3614

    Article  CAS  Google Scholar 

  • Hayakawa H, Kuwano M, Sekiguchi M (2001) Specific binding of 8-oxoguanine-containing RNA to polynucleotide phosphorylase protein. Biochemistry (Mosc) 40:9977–9982

    Article  CAS  Google Scholar 

  • Hayakawa H, Uchiumi T, Fukuda T et al (2002) Binding capacity of human YB-1 protein for RNA containing 8-oxoguanine. Biochemistry (Mosc) 41:12739–12744

    Article  CAS  Google Scholar 

  • Hayakawa H, Fujikane A, Ito R, Matsumoto M, Nakayama KI, Sekiguchi M (2010) Human proteins that specifically bind to 8-oxoguanine-containing RNA and their responses to oxidative stress. Biochem Biophys Res Commun 403:220–224

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Arai N, Satoh J et al (2002) Neurodegenerative mechanisms in subacute sclerosing panencephalitis. J Child Neurol 17:725–730

    Article  PubMed  Google Scholar 

  • Hayashi M, Araki S, Kohyama J, Shioda K, Fukatsu R (2005) Oxidative nucleotide damage and superoxide dismutase expression in the brains of xeroderma pigmentosum group A and Cockayne syndrome. Brain Dev 27:34–38

    Article  PubMed  Google Scholar 

  • Herrup K (2010) Reimagining Alzheimer’s disease—an age-based hypothesis. J Neurosci 30:16755–16762

    Article  PubMed  CAS  Google Scholar 

  • Hirai K, Aliev G, Nunomura A et al (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    PubMed  CAS  Google Scholar 

  • Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common” neurologic disorders? Neurology 68:326–337

    Article  PubMed  CAS  Google Scholar 

  • Hofer T, Badouard C, Bajak E, Ravanat JL, Mattsson A, Cotgreave IA (2005) Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol Chem 386:333–337

    Article  PubMed  CAS  Google Scholar 

  • Hofer T, Seo AY, Prudencio M, Leeuwenburgh C (2006) A method to determine RNA and DNA oxidation simultaneously by HPLC-ECD: greater RNA than DNA oxidation in rat liver after doxorubicin administration. Biol Chem 387:103–111

    Article  PubMed  CAS  Google Scholar 

  • Hofer T, Fontana L, Anton SD et al (2008a) Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans. Rejuvenation Res 11:793–799

    Article  PubMed  CAS  Google Scholar 

  • Hofer T, Marzetti E, Xu J et al (2008b) Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy. Exp Gerontol 43:563–570

    Article  PubMed  CAS  Google Scholar 

  • Hoffman WH, Siedlak SL, Wang Y, Castellani RJ, Smith MA (2011) Oxidative damage is present in the fatal brain edema of diabetic ketoacidosis. Brain Res 1369:194–202

    Article  PubMed  CAS  Google Scholar 

  • Holcomb DR, Ropp PA, Theil EC, Thorp HH (2010) Nature of guanine oxidation in RNA via the flash-quench technique versus direct oxidation by a metal oxo complex. Inorg Chem 49:786–795

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Smith MA, Zhu X et al (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem 280:20978–20986

    Article  PubMed  CAS  Google Scholar 

  • Honig LS, Kukull W, Mayeux R (2005) Atherosclerosis and AD: analysis of data from the US National Alzheimer’s Coordinating Center. Neurology 64:494–500

    Article  PubMed  Google Scholar 

  • Huang WL, King VR, Curran OE et al (2007) A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 130:3004–3019

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169

    PubMed  CAS  Google Scholar 

  • Ishibashi T, Hayakawa H, Ito R, Miyazawa M, Yamagata Y, Sekiguchi M (2005) Mammalian enzymes for preventing transcriptional errors caused by oxidative damage. Nucleic Acids Res 33:3779–3784

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Hayakawa H, Sekiguchi M, Ishibashi T (2005) Multiple enzyme activities of Escherichia coli MutT protein for sanitization of DNA and RNA precursor pools. Biochemistry (Mosc) 44:6670–6674

    Article  CAS  Google Scholar 

  • Jacobs AC, Resendiz MJ, Greenberg MM (2010) Direct strand scission from a nucleobase radical in RNA. J Am Chem Soc 132:3668–3669

    Article  PubMed  CAS  Google Scholar 

  • Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82:2173–2177

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36

    Article  PubMed  CAS  Google Scholar 

  • Joenje H (1989) Genetic toxicology of oxygen. Mutat Res 219:193–208

    Article  PubMed  CAS  Google Scholar 

  • Kajitani K, Yamaguchi H, Dan Y, Furuichi M, Kang D, Nakabeppu Y (2006) MTH1, an oxidized purine nucleoside triphosphatase, suppresses the accumulation of oxidative damage of nucleic acids in the hippocampal microglia during kainate-induced excitotoxicity. J Neurosci 26:1688–1698

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Crain PF, Kuchino Y, Nishimura S, Ootsuyama A, Tanooka H (1986) Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 7:1849–1851

    Article  PubMed  CAS  Google Scholar 

  • Kedersha N, Stoecklin G, Ayodele M et al (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Schmitt FA, Scheff SW et al (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi A, Takeda A, Onodera H et al (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9:244–248

    Article  PubMed  CAS  Google Scholar 

  • King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT (2006) Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci 26:4672–4680

    Article  PubMed  CAS  Google Scholar 

  • Krokan HE, Kavli B, Slupphaug G (2004) Novel aspects of macromolecular repair and relationship to human disease. J Mol Med 82:280–297

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Beebe K, Nangle LA et al (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443:50–55

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wu J, Deleo CJ (2006) RNA damage and surveillance under oxidative stress. IUBMB Life 58:581–588

    Article  PubMed  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Head E, Gharib AM et al (2002) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci USA 99:2356–2361

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Xie F, Rolston R et al (2007) Prevention and treatment of Alzheimer disease and aging: antioxidants. Mini Rev Med Chem 7:171–180

    Article  PubMed  CAS  Google Scholar 

  • Logroscino G, Beghi E, Zoccolella S et al (2005) Incidence of amyotrophic lateral sclerosis in southern Italy: a population based study. J Neurol Neurosurg Psychiatry 76:1094–1098

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Markesbery WR (2008) Oxidatively modified RNA in mild cognitive impairment. Neurobiol Dis 29:169–175

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Xiong S, Lyubartseva G, Markesbery WR (2009) Organoselenium (Sel-Plex diet) decreases amyloid burden and RNA and DNA oxidative damage in APP/PS1 mice. Free Radic Biol Med 46:1527–1533

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Soman S, Bradley MA (2011) Oxidatively modified nucleic acids in preclinical Alzheimer’s disease (PCAD) brain. Mech Ageing Dev 132:443–448

    Article  PubMed  CAS  Google Scholar 

  • Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716

    Article  PubMed  CAS  Google Scholar 

  • Manini P, De Palma G, Andreoli R et al (2009) Biomarkers of nucleic acid oxidation, polymorphism in, and expression of, hOGG1 gene in styrene-exposed workers. Toxicol Lett 190:41–47

    Article  PubMed  CAS  Google Scholar 

  • Manini P, De Palma G, Andreoli R et al (2010) Occupational exposure to low levels of benzene: biomarkers of exposure and nucleic acid oxidation and their modulation by polymorphic xenobiotic metabolizing enzymes. Toxicol Lett 193:229–235

    Article  PubMed  CAS  Google Scholar 

  • Martinet W, de Meyer GR, Herman AG, Kockx MM (2004) Reactive oxygen species induce RNA damage in human atherosclerosis. Eur J Clin Invest 34:323–327

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Chan SL, Duan W (2002) Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 82:637–672

    PubMed  CAS  Google Scholar 

  • Mehler MF, Mattick JS (2006) Non-coding RNAs in the nervous system. J Physiol 575:333–341

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev 87:799–823

    Article  PubMed  CAS  Google Scholar 

  • Migliore L, Fontana I, Trippi F et al (2005) Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol Aging 26:567–573

    Article  PubMed  CAS  Google Scholar 

  • Miyata R, Hayashi M, Tanuma N, Shioda K, Fukatsu R, Mizutani S (2008) Oxidative stress in neurodegeneration in dentatorubral-pallidoluysian atrophy. J Neurol Sci 264:133–139

    Article  PubMed  CAS  Google Scholar 

  • Moreira PI, Honda K, Zhu X et al (2006a) Brain and brawn: parallels in oxidative strength. Neurology 66(Suppl 1):S97–S101

    Article  PubMed  CAS  Google Scholar 

  • Moreira PI, Zhu X, Nunomura A, Smith MA, Perry G (2006b) Therapeutic options in Alzheimer’s disease. Expert Rev Neurother 6:897–910

    Article  PubMed  CAS  Google Scholar 

  • Moreira PI, Nunomura A, Nakamura M et al (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44:1493–1505

    Article  PubMed  CAS  Google Scholar 

  • Mundt JM, Hah SS, Sumbad RA, Schramm V, Henderson PT (2008) Incorporation of extracellular 8-oxodG into DNA and RNA requires purine nucleoside phosphorylase in MCF-7 cells. Nucleic Acids Res 36:228–236

    Article  PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Tsuchimoto D, Ichinoe A et al (2004) Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: from mitochondria to nuclei. Ann N Y Acad Sci 1011:101–111

    Article  PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Kajitani K, Sakamoto K, Yamaguchi H, Tsuchimoto D (2006) MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair (Amst) 5:761–772

    Article  CAS  Google Scholar 

  • Nelson PT, Wang WX, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18:130–138

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, Perry G, Pappolla MA et al (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964

    PubMed  CAS  Google Scholar 

  • Nunomura A, Perry G, Pappolla MA et al (2000) Neuronal oxidative stress precedes amyloid-β deposition in Down syndrome. J Neuropathol Exp Neurol 59:1011–1017

    PubMed  CAS  Google Scholar 

  • Nunomura A, Perry G, Aliev G et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    PubMed  CAS  Google Scholar 

  • Nunomura A, Chiba S, Kosaka K et al (2002) Neuronal RNA oxidation is a prominent feature of dementia with Lewy bodies. NeuroReport 13:2035–2039

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, Chiba S, Lippa CF et al (2004) Neuronal RNA oxidation is a prominent feature of familial Alzheimer’s disease. Neurobiol Dis 17:108–113

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 65:631–641

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, Moreira PI, Lee HG et al (2007) Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol Disord: Drug Targets 6:411–423

    Article  CAS  Google Scholar 

  • Nunomura A, Tamaoki T, Tanaka K et al (2010) Intraneuronal amyloid β accumulation and oxidative damage to nucleic acids in Alzheimer disease. Neurobiol Dis 37:731–737

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, Tamaoki T, Motohashi N et al (2012) The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons. J Neuropathol Exp Neurol 71:233–241

    Article  PubMed  CAS  Google Scholar 

  • Park EM, Shigenaga MK, Degan P et al (1992) Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc Natl Acad Sci USA 89:3375–3379

    Article  PubMed  CAS  Google Scholar 

  • Perkins DO, Jeffries C, Sullivan P (2005) Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatry 10:69–78

    Article  PubMed  CAS  Google Scholar 

  • Perry G, Nunomura A, Cash AD et al (2002a) Reactive oxygen: its sources and significance in Alzheimer disease. J Neural Transm Suppl 62:69–75

    PubMed  CAS  Google Scholar 

  • Perry G, Nunomura A, Hirai K et al (2002b) Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic Biol Med 33:1475–1479

    Article  PubMed  CAS  Google Scholar 

  • Petersen RB, Siedlak SL, Lee HG et al (2005) Redox metals and oxidative abnormalities in human prion diseases. Acta Neuropathol 110:232–238

    Article  PubMed  CAS  Google Scholar 

  • Praticò D, Clark CM, Liun F, Rokach J, Lee VY, Trojanowski JQ (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59:972–976

    Article  PubMed  Google Scholar 

  • Rahkonen T, Eloniemi-Sulkava U, Rissanen S, Vatanen A, Viramo P, Sulkava R (2003) Dementia with Lewy bodies according to the consensus criteria in a general population aged 75 years or older. J Neurol Neurosurg Psychiatry 74:720–724

    Article  PubMed  CAS  Google Scholar 

  • Rhee Y, Valentine MR, Termini J (1995) Oxidative base damage in RNA detected by reverse transcriptase. Nucleic Acids Res 23:3275–3282

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi P, Polidori MC, Metastasio A et al (2003) Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging 24:915–919

    Article  PubMed  CAS  Google Scholar 

  • Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  PubMed  CAS  Google Scholar 

  • Row BW, Liu R, Xu W, Kheirandish L, Gozal D (2003) Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med 167:1548–1553

    Article  PubMed  Google Scholar 

  • Satterlee JS, Barbee S, Jin P et al (2007) Noncoding RNAs in the Brain. J Neurosci 27:11856–11859

    Article  PubMed  CAS  Google Scholar 

  • Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097

    Article  PubMed  CAS  Google Scholar 

  • Sayre LM, Perry G, Smith MA (1999) In situ methods for detection and localization of markers of oxidative stress: application in neurodegenerative disorders. Methods Enzymol 309:133–152

    Article  PubMed  CAS  Google Scholar 

  • Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738

    PubMed  CAS  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  PubMed  CAS  Google Scholar 

  • Schneider JE Jr, Phillips JR, Pye Q, Maidt ML, Price S, Floyd RA (1993) Methylene blue and rose bengal photoinactivation of RNA bacteriophages: comparative studies of 8-oxoguanine formation in isolated RNA. Arch Biochem Biophys 301:91–97

    Article  PubMed  CAS  Google Scholar 

  • Schubert J, Wilmer JW (1991) Does hydrogen peroxide exist “free” in biological systems? Free Radic Biol Med 11:545–555

    Article  PubMed  CAS  Google Scholar 

  • Seo AY, Hofer T, Sung B, Judge S, Chung HY, Leeuwenburgh C (2006) Hepatic oxidative stress during aging: effects of 8% long-term calorie restriction and lifelong exercise. Antioxid Redox Signal 8:529–538

    Article  PubMed  CAS  Google Scholar 

  • Seo AY, Xu J, Servais S et al (2008) Mitochondrial iron accumulation with age and functional consequences. Aging Cell 7:706–716

    Article  PubMed  CAS  Google Scholar 

  • Shan X, Lin CL (2006) Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol Aging 27:657–662

    Article  PubMed  CAS  Google Scholar 

  • Shan X, Tashiro H, Lin CL (2003) The identification and characterization of oxidized RNAs in Alzheimer’s disease. J Neurosci 23:4913–4921

    PubMed  CAS  Google Scholar 

  • Shan X, Chang Y, Lin CL (2007) Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J 21:2753–2764

    Article  PubMed  CAS  Google Scholar 

  • Shao C, Xiong S, Li GM et al (2008) Altered 8-oxoguanine glycosylase in mild cognitive impairment and late-stage Alzheimer’s disease brain. Free Radic Biol Med 45:813–819

    Article  PubMed  CAS  Google Scholar 

  • Shen Z, Wu W, Hazen SL (2000) Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry (Mosc) 39:5474–5482

    Article  CAS  Google Scholar 

  • Sheth U, Parker R (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300:805–808

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Gibson GE (2011) Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. J Neurochem 118:440–448

    Article  PubMed  CAS  Google Scholar 

  • Shi F, Gan W, Nie B et al (2012) Greater nucleic acids oxidation in the temporal lobe than the frontal lobe in SAMP8. NeuroReport 23:508–512

    Article  PubMed  CAS  Google Scholar 

  • Shimura-Miura H, Hattori N, Kang D, Miyako K, Nakabeppu Y, Mizuno Y (1999) Increased 8-oxo-dGTPase in the mitochondria of substantia nigral neurons in Parkinson’s disease. Ann Neurol 46:920–924

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Perry G, Richey PL et al (1996) Oxidative damage in Alzheimer’s. Nature 382:120–121

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Nunomura A, Zhu X, Takeda A, Perry G (2000) Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease. Antioxid Redox Signal 2:413–420

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H et al (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205

    Article  PubMed  CAS  Google Scholar 

  • Song XN, Zhang LQ, Liu DG et al (2011) Oxidative damage to RNA and expression patterns of MTH1 in the hippocampi of senescence-accelerated SAMP8 mice and Alzheimer’s disease patients. Neurochem Res 36:1558–1565

    Article  PubMed  CAS  Google Scholar 

  • Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease; recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    Article  PubMed  Google Scholar 

  • Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2005) A new frontier for molecular medicine: noncoding RNAs. Biochim Biophys Acta 1756:65–75

    PubMed  CAS  Google Scholar 

  • Taddei F, Hayakawa H, Bouton M et al (1997) Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 278:128–130

    Article  PubMed  CAS  Google Scholar 

  • Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 29:288–299

    Article  PubMed  CAS  Google Scholar 

  • Takahashi MA, Asada K (1983) Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophys 226:558–566

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Chock PB, Stadtman ER (2007) Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci USA 104:66–71

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Han S, Küpfer PA, Leumann CJ, Sonntag WE (2011a) Quantification of oxidized levels of specific RNA species using an aldehyde reactive probe. Anal Biochem 417:142–148

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Han S, Küpfer PA, Leumann CJ, Sonntag WE (2011b) An assay for RNA oxidation induced abasic sites using the Aldehyde Reactive Probe. Free Radic Res 45:237–247

    Article  PubMed  CAS  Google Scholar 

  • Tateyama M, Takeda A, Onodera Y et al (2003) Oxidative stress and predominant Aβ42(43) deposition in myopathies with rimmed vacuoles. Acta Neuropathol 105:581–585

    PubMed  CAS  Google Scholar 

  • Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen FW, de Kleijn DP, van den Hurk HH et al (1998) Frameshift mutants of β amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279:242–247

    Article  PubMed  Google Scholar 

  • Vascotto C, Fantini D, Romanello M et al (2009) APE1/Ref-1 interacts with NPM1 within nucleoli and plays a role in the rRNA quality control process. Mol Cell Biol 29:1834–1854

    Article  PubMed  CAS  Google Scholar 

  • Wamer WG, Wei RR (1997) In vitro photooxidation of nucleic acids by ultraviolet A radiation. Photochem Photobiol 65:560–563

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Yu S, Simonyi A, Sun GY, Sun AY (2005) Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol 31:3–16

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Markesbery WR, Lovell MA (2006) Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J Neurochem 96:825–832

    Article  PubMed  CAS  Google Scholar 

  • Weidner AM, Bradley MA, Beckett TL et al (2011) RNA oxidation adducts 8-OHG and 8-OHA change with Aβ42 levels in late-stage Alzheimer’s disease. PLoS ONE 6(9):e24930

    Article  PubMed  CAS  Google Scholar 

  • Weimann A, Belling D, Poulsen HE (2002) Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Res 30:e7

    Article  PubMed  Google Scholar 

  • Weissman L, Jo DG, Sørensen MM et al (2007) Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res 35:5545–5555

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Li Z (2008) Human polynucleotide phosphorylase reduces oxidative RNA damage and protects HeLa cell against oxidative stress. Biochem Biophys Res Commun 372:288–292

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Kajitani K, Dan Y et al (2006) MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage in nucleic acids caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Cell Death Differ 13:551–563

    Article  PubMed  CAS  Google Scholar 

  • Yanagawa H, Ogawa Y, Ueno M (1992) Redox ribonucleosides. Isolation and characterization of 5-hydroxyuridine, 8-hydroxyguanosine, and 8-hydroxyadenosine from Torula yeast RNA. J Biol Chem 267:13320–13326

    PubMed  CAS  Google Scholar 

  • Yang WH, Bloch DB (2007) Probing the mRNA processing body using protein macroarrays and “autoantigenomics”. RNA 13:704–712

    Article  PubMed  CAS  Google Scholar 

  • Yin B, Whyatt RM, Perera FP, Randall MC, Cooper TB, Santella RM (1995) Determination of 8-hydroxydeoxyguanosine by an immunoaffinity chromatography-monoclonal antibody-based ELISA. Free Radic Biol Med 18:1023–1032

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Perry G, Smith MA et al (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423–1429

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Nunomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunomura, A., Moreira, P.I., Castellani, R.J. et al. Oxidative Damage to RNA in Aging and Neurodegenerative Disorders. Neurotox Res 22, 231–248 (2012). https://doi.org/10.1007/s12640-012-9331-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9331-x

Keywords

Navigation