Skip to main content
Log in

Neuroprotective Effects of White Tea Against Oxidative Stress-Induced Toxicity in Striatal Cells

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Tea is one of the most widely consumed beverages in the world and represents an important source of antioxidants mainly catechins that confer beneficial effects in reducing the risk of cardiovascular diseases, age-related disorders or cancer. In the central nervous system, oxidative stress caused by increased production of reactive oxygen and nitrogen species represents an important mechanism for neuronal dysfunction and cell loss in different neurodegenerative disorders. The neuroprotective effects of green-tea-derived polyphenols have extensively been demonstrated in different models of neurotoxicity. However, few data have been reported on the antioxidant activity of white tea extracts in the nervous system. In the present study, we demonstrate that white tea extracts protect striatal cell lines against oxidative stress-mediated cell death. The effects of white tea on protection of striatal cell cultures are likely associated with the antioxidant properties of white tea components since neuronal cell loss induced by nonoxidative insults such as D1 dopamine receptor activation cannot be prevented by pre-treatment with white tea. Altogether our results suggest that regular consumption of white tea may contribute to reduce oxidative stress associated with brain injury and be clinically useful for treating age-related and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abib RT, Quincozes-Santos A, Zanotto C, Zeidan-Chulia F, Lunardi PS, Goncalves CA, Gottfried C (2010) Genoprotective effects of the green tea-derived polyphenol/epicatechin gallate in C6 astroglial cells. J Med Food 13:1111–1115

    Article  PubMed  CAS  Google Scholar 

  • Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778

    PubMed  CAS  Google Scholar 

  • Almajano MP, Carbo R, Lopez Jimenez JA, Gordon MH (2008) Antioxidant and antimicrobial activities of tea infusions. Food Chem 108:55–63

    Article  CAS  Google Scholar 

  • Aoyama K, Matsumura N, Watabe M, Wang F, Kikuchi-Utsumi K, Nakaki T (2011) Caffeine and uric acid mediate glutathione synthesis for neuroprotection. Neuroscience 181:206–215

    Article  PubMed  CAS  Google Scholar 

  • Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR, Shippy D, Tan J (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142:941–952

    Article  PubMed  CAS  Google Scholar 

  • Assuncao M, Santos-Marques MJ, Carvalho F, Andrade JP (2010) Green tea averts age-dependent decline of hippocampal signaling systems related to antioxidant defenses and survival. Free Radic Biol Med 48:831–838

    Article  PubMed  CAS  Google Scholar 

  • Bastianetto S, Yao ZX, Papadopoulos V, Quirion R (2006) Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci 23:55–64

    Article  PubMed  Google Scholar 

  • Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653

    Article  PubMed  CAS  Google Scholar 

  • Cabrera C, Artacho R, Gimenez R (2006) Beneficial effects of green tea—a review. J Am Coll Nutr 25:79–99

    PubMed  CAS  Google Scholar 

  • Canas PM, Porciuncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM, Oliveira CR, Cunha RA (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–14751

    Article  PubMed  CAS  Google Scholar 

  • Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732–738

    Article  PubMed  Google Scholar 

  • Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K, Castagnoli N Jr, Schwarzschild MA (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143

    PubMed  CAS  Google Scholar 

  • Cho HS, Kim S, Lee SY, Park JA, Kim SJ, Chun HS (2008) Protective effect of the green tea component, l-theanine on environmental toxins-induced neuronal cell death. Neurotoxicology 29:656–662

    Article  PubMed  CAS  Google Scholar 

  • Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI (2001) The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70:603–614

    Article  PubMed  CAS  Google Scholar 

  • Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16:357–363

    Article  PubMed  CAS  Google Scholar 

  • Dall′Igna OP, Porciúncula LO, Souza DO, Cunha RA, Lara DR (2003) Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol 138:1207–1209

    Article  PubMed  Google Scholar 

  • Dall′Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR (2007) Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25–35)-induced cognitive deficits in mice. Exp Neurol 203:241–245

    Article  PubMed  Google Scholar 

  • Del Rio D, Stewart AJ, Mullen W, Burns J, Lean ME, Brighenti F, Crozier A (2004) HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J Agric Food Chem 52:2807–2815

    Article  PubMed  CAS  Google Scholar 

  • Dumont M, Lin MT, Beal MF (2010) Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer’s disease. J Alzheimers Dis 20(Suppl 2):S633–S643

    PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  • Haque AM, Hashimoto M, Katakura M, Hara Y, Shido O (2008) Green tea catechins prevent cognitive deficits caused by Abeta1–40 in rats. J Nutr Biochem 19:619–626

    Article  PubMed  CAS  Google Scholar 

  • Hernaez JF, Xu M, Dashwood RH (1998) Antimutagenic activity of tea towards 2-hydroxyamino-3-methylimidazo[4,5-f]quinoline: effect of tea concentration and brew time on electrophile scavenging. Mutat Res 402:299–306

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Weng Z, Chu CT, Zhang L, Cao G, Gao Y, Signore A, Zhu J, Hastings T, Greenamyre JT, Chen J (2011) Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J Neurosci 31:247–261

    Article  PubMed  CAS  Google Scholar 

  • Jakel RJ, Maragos WF (2000) Neuronal cell death in Huntington’s disease: a potential role for dopamine. Trends Neurosci 23:239–245

    Article  PubMed  CAS  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Lau FC (2007) Fruit polyphenols and their effects on neuronal signaling and behavior in senescence. Ann N Y Acad Sci 1100:470–485

    Article  PubMed  CAS  Google Scholar 

  • Kaduka T (2002) Neuroprotective effects of the green tea components theanine and catechins. Biol Pharm Bull 25:1513–1518

    Article  Google Scholar 

  • Kaduka T, Yanase H, Utsunomiya K, Nozawa A, Unno T, Kataoka K (2000) Protective effect of gamma-glutamylethylamide (theanine) on ischemic delayed neuronal death in gerbils. Neurosci Lett 289:189–192

    Article  Google Scholar 

  • Keli SO, Hertog MG, Feskens EJ, Kromhout D (1996) Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Arch Intern Med 156:637–642

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81:519–533

    Article  PubMed  CAS  Google Scholar 

  • Khokhar S, Magnusdottir SG (2002) Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J Agric Food Chem 50:565–570

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kim JM, Jeon BS (2010) Inhibition of inducible nitric oxide synthase expression and cell death by (-)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Clin Neurosci 17:1165–1168

    Article  PubMed  CAS  Google Scholar 

  • Komes D, Belscak-Cvitanovic A, Horzic D, Rusak G, Likic S, Berendika M (2010) Phenolic composition and antioxidant properties of some traditionally used medicinal plants affected by the extraction time and hydrolysis. Phytochem Anal 22(2):172–180

    Article  PubMed  Google Scholar 

  • Kumar P, Kumar A (2009) Protective effects of epigallocatechin gallate following 3-nitropropionic acid-induced brain damage: possible nitric oxide mechanisms. Psychopharmacology (Berl) 207:257–270

    Article  CAS  Google Scholar 

  • Lee JH, Song DK, Jung CH, Shin DH, Park J, Kwon TK, Jang BC, Mun KC, Kim SP, Suh SI, Bae JH (2004) (-)-Epigallocatechin gallate attenuates glutamate-induced cytotoxicity via intracellular Ca modulation in PC12 cells. Clin Exp Pharmacol Physiol 31:530–536

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Zhao H, Zhao M, Zhang Z, Li Y (2010) Chronic green tea catechins administration prevents oxidative stress-related brain aging in C57BL/6J mice. Brain Res 1353:28–35

    Article  PubMed  CAS  Google Scholar 

  • Lopez V, Calvo MI (2011) White tea (Camellia sinensis Kuntze) exerts neuroprotection against hydrogen peroxide-induced toxicity in PC12 cells. Plant Foods Hum Nutr 66:22–26

    Article  PubMed  Google Scholar 

  • Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MB (2006) Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 50:229–234

    Article  PubMed  CAS  Google Scholar 

  • Moldzio R, Radad K, Krewenka C, Kranner B, Duvigneau JC, Wang Y, Rausch WD (2010) Effects of epigallocatechin gallate on rotenone-injured murine brain cultures. J Neural Transm 117:5–12

    Article  PubMed  CAS  Google Scholar 

  • Muller N, Ellinger S, Alteheld B, Ulrich-Merzenich G, Berthold HK, Vetter H, Stehle P (2010) Bolus ingestion of white and green tea increases the concentration of several flavan-3-ols in plasma, but does not affect markers of oxidative stress in healthy non-smokers. Mol Nutr Food Res 54:1636–1645

    Article  PubMed  Google Scholar 

  • Multhaup G, Ruppert T, Schlicksupp A, Hesse L, Beher D, Masters CL, Beyreuther K (1997) Reactive oxygen species and Alzheimer’s disease. Biochem Pharmacol 54:533–539

    Article  PubMed  CAS  Google Scholar 

  • Nie G, Jin C, Cao Y, Shen S, Zhao B (2002) Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Arch Biochem Biophys 397:84–90

    Article  PubMed  CAS  Google Scholar 

  • Paoletti P, Vila I, Rife M, Lizcano JM, Alberch J, Gines S (2008) Dopaminergic and glutamatergic signaling crosstalk in Huntington’s disease neurodegeneration: the role of p25/cyclin-dependent kinase 5. J Neurosci 28:10090–10101

    Article  PubMed  CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  PubMed  CAS  Google Scholar 

  • Quintanilla RA, Johnson GV (2009) Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease. Brain Res Bull 80:242–247

    Article  PubMed  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  PubMed  CAS  Google Scholar 

  • Santana-Rios G, Orner GA, Amantana A, Provost C, Wu SY, Dashwood RH (2001) Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay. Mutat Res 495:61–74

    PubMed  CAS  Google Scholar 

  • Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355

    Article  PubMed  CAS  Google Scholar 

  • Stack EC, Matson WR, Ferrante RJ (2008) Evidence of oxidant damage in Huntington’s disease: translational strategies using antioxidants. Ann N Y Acad Sci 1147:79–92

    Article  PubMed  CAS  Google Scholar 

  • Stewart AJ, Mullen W, Crozier A (2005) On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea. Mol Nutr Food Res 49:52–60

    Article  PubMed  CAS  Google Scholar 

  • Surendran S, Rajasankar S (2010) Parkinson’s disease: oxidative stress and therapeutic approaches. Neurol Sci 31:531–540

    Article  PubMed  Google Scholar 

  • Suzuki M, Tabuchi M, Ikeda M, Umegaki K, Tomita T (2004) Protective effects of green tea catechins on cerebral ischemic damage. Med Sci Monit 10:BR166–BR174

    PubMed  CAS  Google Scholar 

  • Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45:25–32

    Article  PubMed  CAS  Google Scholar 

  • Tabrizi SJ, Workman J, Hart PE, Mangiarini L, Mahal A, Bates G, Cooper JM, Schapira AH (2000) Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 47:80–86

    Article  PubMed  CAS  Google Scholar 

  • Tan EK, Tan C, Fook-Chong SM, Lum SY, Chai A, Chung H, Shen H, Zhao Y, Teoh ML, Yih Y, Pavanni R, Chandran VR, Wong MC (2003) Dose-dependent protective effect of coffee, tea, and smoking in Parkinson’s disease: a study in ethnic Chinese. J Neurol Sci 216:163–167

    Article  PubMed  Google Scholar 

  • Thring TS, Hili P, Naughton DP (2009) Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Altern Med 9:27

    Article  PubMed  Google Scholar 

  • Tipoe GL, Leung TM, Hung MW, Fung ML (2007) Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets 7:135–144

    PubMed  CAS  Google Scholar 

  • Trettel F, Rigamonti D, Hilditch-Maguire P, Wheeler VC, Sharp AH, Persichetti F, Cattaneo E, MacDonald ME (2000) Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet 9:2799–2809

    Article  PubMed  CAS  Google Scholar 

  • Unachukwu UJ, Ahmed S, Kavalier A, Lyles JT, Kennelly EJ (2010) White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles. J Food Sci 75:C541–C548

    Article  PubMed  CAS  Google Scholar 

  • Unno K, Takabayashi F, Yoshida H, Choba D, Fukutomi R, Kikunaga N, Kishido T, Oku N, Hoshino M (2007) Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology 8:89–95

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Macdonald for providing the striatal cell line. We are very grateful to Cristina Herranz, Ana Lopez, M. Teresa Muñoz, for technical assistance. This work was supported by grants from Ministerio de Ciencia e Innovación (SAF2009-07077 to SG), Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED CB06/05/0054), Fondo de Investigaciones Sanitarias (Instituto de Salud Carlos III, RETICS: RD06/0010/0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almajano, M.P., Vila, I. & Gines, S. Neuroprotective Effects of White Tea Against Oxidative Stress-Induced Toxicity in Striatal Cells. Neurotox Res 20, 372–378 (2011). https://doi.org/10.1007/s12640-011-9252-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9252-0

Keywords

Navigation