Skip to main content

Advertisement

Log in

Effect of Exposure to 1,800 MHz Electromagnetic Fields on Heat Shock Proteins and Glial Cells in the Brain of Developing Rats

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The increasing use of mobile phones by children raise issues about the effects of electromagnetic fields (EMF) on the immature Central Nervous System (CNS). In the present study, we quantified cell stress and glial responses in the brain of developing rats one day after a single exposure of 2 h to a GSM 1,800 MHz signal at a brain average Specific Absorption Rate (SAR) in the range of 1.7 to 2.5 W/kg. Young rats, exposed to EMF on postnatal days (P) 5 (n = 6), 15 (n = 5) or 35 (n = 6), were compared to pseudo-exposed littermate rats (n = 6 at all ages). We used western blotting to detect heat shock proteins (HSPs) and cytoskeleton- or neurotransmission-related proteins in the developing astroglia. The GSM signal had no significant effect on the abundance of HSP60, HSC70 or HSP90, of serine racemase, glutamate transporters including GLT1 and GLAST, or of glial fibrillary acid protein (GFAP) in either total or soluble tissue extracts. Imunohistochemical detection of CD68 antigen in brain sections from pseudo-exposed and exposed animals did not reveal any differences in the morphology or distribution of microglial cells. These results provide no evidence for acute cell stress or glial reactions indicative of early neural cell damage, in developing brains exposed to 1,800 MHz signals in the range of SAR used in our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammari M, Brillaud E, Gamez C, Lecomte A, Sakly M, Abdelmelek H, de Seze R (2008) Effect of a chronic GSM 900 MHz exposure on glia in the rat brain. Biomed Pharmacother 62(4):273–281

    Article  PubMed  CAS  Google Scholar 

  • Bartsch H, Bartsch C, Seebald E, Deerberg F, Dietz K, Vollrath L, Mecke D (2002) Chronic exposure to a GSM-like signal (mobile phone) does not stimulate the development of DMBA-induced mammary tumors in rats: results of three consecutive studies. Radiat Res 157(2):183–190

    Article  PubMed  CAS  Google Scholar 

  • Bas O, Odaci E, Mollaoglu H, Ucok K, Kaplan S (2009a) Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol Ind Health 25:377–384

    Article  PubMed  CAS  Google Scholar 

  • Bas O, Odaci E, Kaplan S, Acer N, Ucok K, Colakoglu S (2009b) 900 MHz electromagnetic field exposure affects qualitative and quantitative features of hippocampal pyramidal cells in the adult female rat. Brain Res 1265:178–185

    Article  PubMed  CAS  Google Scholar 

  • Bornhausen M, Scheingraber H (2000) Prenatal exposure to 900 MHz, cell-phone electromagnetic fields had no effect on operant-behavior performances of adult rats. Bioelectromagnetics 21:566–574

    Article  PubMed  CAS  Google Scholar 

  • Brillaud E, Piotrowski A, de Seze R (2007) Effect of an acute 900 MHz GSM exposure on glia in the rat brain: a time-dependent study. Toxicology 238:23–33

    Article  PubMed  CAS  Google Scholar 

  • Chamak B, Dobbertin A, Mallat M (1995) Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience 69:177–187

    Article  PubMed  CAS  Google Scholar 

  • Chan P, Eng LF, Lee YL, Lin VW (1999) Effects of pulsed magnetic stimulation of GFAP levels in cultured astrocytes. J Neurosci Res 55:238–244

    Article  PubMed  CAS  Google Scholar 

  • Cheret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause KH, Mallat M (2008) Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci 28:12039–12051

    Article  PubMed  CAS  Google Scholar 

  • Curcio G, Ferrara M, Moroni F, D’Inzeo G, Bertini M, De Gennaro L (2005) Is the brain influenced by a phone call? An EEG study of resting wakefulness. Neurosci Res 53:265–270

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil D, Jay TM, Edeline J-M (2002) Does head-only exposure to GSM-900 MHz electromagnetic fields affect the performance of rats in spatial learning task? Behav Brain Res 129(1–2):203–210

    Article  PubMed  Google Scholar 

  • Dubreuil D, Jay TM, Edeline J-M (2003) Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat’s memory in spatial and non-spatial tasks. Behav Brain Res 145(1–2):51–61

    Article  PubMed  Google Scholar 

  • Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4:229–237

    Article  PubMed  CAS  Google Scholar 

  • Franzellitti S, Valbonesi P, Contin A, Biondi C, Fabbri E (2008) HSP70 expression in human trophoblast cells exposed to different 1.8 Ghz mobile phone signals. Radiat Res 170(4):488–497

    Article  PubMed  CAS  Google Scholar 

  • Fritze K, Wiessner C, Kuster N, Sommer C, Gass P, Hermann DM, Kiessling M, Hossmann KA (1997) Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain. Neuroscience. 81(3):627–639

    Article  PubMed  CAS  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Heikkinen P, Kosma VM, Hongisto T, Huuskonen H, Hyysalo P, Komulainen H, Kumlin T, Lahtinen T, Lang S, Puranen L, Juutilainen J (2001) Effects of mobile phone radiation on X-ray-induced tumorigenesis in mice. Radiat Res 156:775–785

    Article  PubMed  CAS  Google Scholar 

  • Hirose H, Sasaki A, Ishii N, Sekijima M, Iyama T, Nojima T, Ugawa Y (2010) 1950 MHz IMT-2000 field does not activate microglial cells in vitro. Bioelectromagnetics 31:104–112

    PubMed  CAS  Google Scholar 

  • Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 14:346–352

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  • Lévèque P, Dale C, Veyret B, Wiart J (2004) Dosimetric analysis of a 900 MHz rat head exposure system. IEEE Trans Microw Theory Tech 52(8):2076–2083

    Article  Google Scholar 

  • Masuda H, Ushiyama A, Takahashi M, Wang J, Fujiwara O, Hikage T, Nojima T, Fujita K, Kudo M, Ohkubo C (2009) Effects of 915 MHz electromagnetic-field radiation in TEM cell on the blood-brain barrier and neurons in the rat brain. Radiat Res 172:66–73

    Article  PubMed  CAS  Google Scholar 

  • Mausset-Bonnefont AL, Hirbec H, Bonnefont X, Privat A, Vignon J, de Seze R (2004) Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiol Dis 17:445–454

    Article  PubMed  CAS  Google Scholar 

  • Nowak TS Jr, Bond U, Schlesinger MJ (1990) Heat shock RNA levels in brain and other tissues after hyperthermia and transient ischemia. J Neurochem 54(2):451–458

    Article  PubMed  CAS  Google Scholar 

  • Odaci E, Bas O, Kaplan S (2008) Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain Res 1238:224–229

    Article  PubMed  CAS  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (2003) Developmental and evolutionary adaptations of cortical radial glia. Cereb Cortex 13:541–549

    Article  PubMed  Google Scholar 

  • Repacholi MH, Basten A, Gebski V, Noonan D, Finnie J, Harris AW (1997) Lymphomas in E mu-Pim1 transgenic mice exposed to pulsed 900 MHZ electromagnetic fields. Radiat Res 147:631–640

    Article  PubMed  CAS  Google Scholar 

  • Romera C, Hurtado O, Mallolas J, Pereira MP, Morales JR, Romera A, Serena J, Vivancos J, Nombela F, Lorenzo P, Lizasoain I, Moro MA (2007) Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARgamma target gene involved in neuroprotection. J Cereb Blood Flow Metab 27:1327–1338

    Article  PubMed  CAS  Google Scholar 

  • Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 111:881–883

    Article  PubMed  Google Scholar 

  • Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206

    Article  PubMed  CAS  Google Scholar 

  • Sonmez OF, Odaci E, Bas O, Kaplan S (2010) Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900 MHz electromagnetic field. Brain Res 1356:95–101

    Article  PubMed  CAS  Google Scholar 

  • Sultana S, Sernett SW, Bellin RM, Robson RM, Skalli O (2000) Intermediate filament protein synemin is transiently expressed in a subset of astrocytes during development. Glia 30:143–153

    Article  PubMed  CAS  Google Scholar 

  • Takemura M, Gomi H, Colucci-Guyon E, Itohara S (2002) Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice. J Neurosci 22:6972–6979

    PubMed  CAS  Google Scholar 

  • Utteridge TD, Gebski V, Finnie JW, Vernon-Roberts B, Kuchel TR (2002) Long-term exposure of E-mu-Pim1 transgenic mice to 898.4 MHz microwaves does not increase lymphoma incidence. Radiat Res 158:357–364

    Article  PubMed  CAS  Google Scholar 

  • Valentini E, Curcio G, Moroni F, Ferrara M, De Gennaro L, Bertini M (2007) Neurophysiological effects of mobile phone electromagnetic fields on humans: a comprehensive review. Bioelectromagnetics 28:415–432

    Article  PubMed  CAS  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Zhong M, Zhang L, Zhou Z, Zhang W, Wang Y, Wang X, Li M, Chen Y, Chen C, He M, Zhang G, Yu Z (2010) Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res 1311:189–196

    Article  PubMed  CAS  Google Scholar 

  • Yi JH, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48:394–403

    Article  PubMed  CAS  Google Scholar 

  • Zook BC, Simmens SJ (2001) The effects of 860 MHz radiofrequency radiation on the induction or promotion of brain tumors and other neoplasms in rats. Radiat Res 155:572–583

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by INSERM, CNRS, Université Pierre et Marie Curie and grants from the Fondation Santé et Radiofréquences and from INERIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thérèse M. Jay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watilliaux, A., Edeline, JM., Lévêque, P. et al. Effect of Exposure to 1,800 MHz Electromagnetic Fields on Heat Shock Proteins and Glial Cells in the Brain of Developing Rats. Neurotox Res 20, 109–119 (2011). https://doi.org/10.1007/s12640-010-9225-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9225-8

Keywords

Navigation