Skip to main content

Advertisement

Log in

Neuroprotection of Interleukin-6 Against NMDA-Induced Apoptosis and Its Signal-Transduction Mechanisms

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

We have previously shown that interleukin-6 (IL-6)-protected neurons against the suppression of neuronal vitality and overload of intracellular Ca2+ induced by glutamate or N-methyl-d-aspartate (NMDA). Herein we provide further evidence for IL-6 neuroprotection against NMDA-induced apoptosis and explore the signal-transduction mechanisms underlying the anti-apoptotic action of IL-6. Cerebellar granule neurons (CGNs) from postnatal 8-day infant rats were chronically exposed to IL-6 (40 or 120 ng/ml) for 8 days, and stimulated with NMDA (100 μM) for 30 min. To observe the signaling pathways, we employed AG490 (5 or 10 μM), an inhibitor of Janus kinases (JAKs), or LY294002 (5 or 10 μM), an inhibitor of phosphatidylinositol 3-kinase (PI3K), to pretreat the CGNS together with IL-6. The levels of phosphorylation for the downstream effectors of JAKs and PI3K, i.e., phosphorylated STAT3 and Akt, were quantified by Western blot assay. In the cultured CGNs with various drug exposures, the expressions of Bcl-2, Bax, and caspase-3 were measured by real-time PCR and Western blot, and the percentage of apoptotic nuclei was tested by Hoechst 33342 staining. After the CGNs were chronically exposed to IL-6, NMDA stimulation led to an increase in the expression of Bcl-2 mRNA and a decrease in the expression of Bax and caspase-3 mRNAs and proteins when compared with those neurons lacking IL-6 exposure. IL-6 pretreatment of the neurons without NMDA stimulation concentration-dependently enhanced the expressions of Bcl-2 mRNA and protein while attenuating the expressions of Bax and caspase-3 mRNAs and proteins in comparison with control lacking any treatment. Furthermore, IL-6 prevented the increase in the percentage of apoptotic neurons induced by NMDA. The combined pretreatment of the CGNs with AG490 and IL-6 or with LY294002 and IL-6 reduced these anti-apoptotic effects of IL-6. Neither AG490 nor LY294002 exposure alone altered the expressions of Bcl-2, Bax, and cleaved caspase-3 proteins. IL-6 up-regulated the levels of phosphorylated STAT3 and Akt, and this was blocked by AG490 and LY294002, respectively. These results suggest that IL-6 protects neurons against NMDA-induced apoptosis, and that the IL-6 neuroprotection is jointly mediated by JAK-STAT3 and PI3K-Akt signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali C, Nicole O, Docagne F, Lesne S, MacKenzie ET, Nouvelot A, Buisson A, Vivien D (2000) Ischemia-induced interleukin-6 as a potential endogenous neuroprotective cytokine against NMDA receptor-mediated excitotoxicity in the brain. J Cereb Blood Flow Metab 20:956–966

    Article  CAS  PubMed  Google Scholar 

  • Allen S, Sotos J, Sylte MJ, Czuprynski CJ (2001) Use of Hoechst 33342 staining to detect apoptotic changes in bovine mononuclear phagocytes infected with Mycobacterium avium subsp. paratuberculosis. Clin Diagn Lab Immunol 8:460–464

    CAS  PubMed  Google Scholar 

  • Baker DG, Ekhator NN, Kasckow JW, Hill KK, Zoumakis E, Dashevsky BA, Chrousos GP Jr, Geracioti TD (2001) Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation 9:209–217

    Article  CAS  PubMed  Google Scholar 

  • Baranzini SE, Elfstrom C, Chang SY, Butunoi C, Murray R, Higuchi R, Oksenberg JR (2000) Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. J Immunol 165:6576–6582

    CAS  PubMed  Google Scholar 

  • Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11:297–305

    Article  CAS  PubMed  Google Scholar 

  • Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    Article  CAS  PubMed  Google Scholar 

  • Conroy SM, Nguyen V, Quina LA, Blakely-Gonzales P, Ur C, Netzeband JG, Prieto AL, Gruol DL (2004) Interleukin-6 produces neuronal loss in developing cerebellar granule neuron cultures. J Neuroimmunol 155:43–54

    Article  CAS  PubMed  Google Scholar 

  • Culmsee C, Plesnila N (2006) Targeting Bid to prevent programmed cell death in neurons. Biochem Soc Trans 34:1334–1340

    Article  CAS  PubMed  Google Scholar 

  • Fukada T, Hibi M, Yamanaka Y, Takahashi-Tezuka M, Fujitani Y, Yamaguchi T, Nakajima K, Hirano T (1996) Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity 5:449–460

    Article  CAS  PubMed  Google Scholar 

  • Gadient RA, Otten U (1993) Differential expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) mRNAs in rat hypothalamus. Neurosci Lett 153:13–16

    Article  CAS  PubMed  Google Scholar 

  • Gadient RA, Otten U (1994) Identification of interleukin-6 (IL-6)-expressing neurons in the cerebellum and hippocampus of normal adult rats. Neurosci Lett 182:243–246

    Article  CAS  PubMed  Google Scholar 

  • Gruol DL, Nelson TE (2005) Purkinje neuron physiology is altered by the inflammatory factor interleukin-6. Cerebellum 4:198–205

    Article  CAS  PubMed  Google Scholar 

  • Gschwind M, Huber G (1995) Apoptotic cell death induced by beta-amyloid 1–42 peptide is cell type dependent. J Neurochem 65:292–300

    Article  CAS  PubMed  Google Scholar 

  • Herrmann O, Tarabin V, Suzuki S, Attigah N, Coserea I, Schneider A, Vogel J, Prinz S, Schwab S, Monyer H, Brombacher F, Schwaninger M (2003) Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia. J Cereb Blood Flow Metab 23:406–415

    Article  CAS  PubMed  Google Scholar 

  • Inomata Y, Hirata A, Yonemura N, Koga T, Kido N, Tanihara H (2003) Neuroprotective effects of interleukin-6 on NMDA-induced rat retinal damage. Biochem Biophys Res Commun 302:226–232

    Article  CAS  PubMed  Google Scholar 

  • Jee SH, Chiu HC, Tsai TF, Tsai WL, Liao YH, Chu CY, Kuo ML (2002) The phosphotidyl inositol 3-kinase/Akt signal pathway is involved in interleukin-6-mediated Mcl-1 upregulation and anti-apoptosis activity in basal cell carcinoma cells. J Invest Dermatol 119:1121–1127

    Article  CAS  PubMed  Google Scholar 

  • Kamimura D, Ishihara K, Hirano T (2003) IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol 149:1–38

    Article  CAS  PubMed  Google Scholar 

  • Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT (1997) Caspase 3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298

    Article  CAS  PubMed  Google Scholar 

  • Kunioku H, Inoue K, Tomida M (2001) Interleukin-6 protects rat PC12 cells from serum deprivation or chemotherapeutic agents through the phosphatidylinositol 3-kinase and STAT3 pathways. Neurosci Lett 309:13–16

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−△△Ct method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lizard G, Fournel S, Genestier L, Dhedin N, Chaput C, Flacher M, Mutin M, Panaye G, Revillard JP (1995) Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis. Cytometry 21:275–283

    Article  CAS  PubMed  Google Scholar 

  • Loddick SA, Turnbull AV, Rothwell NJ (1998) Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 18:176–179

    Article  CAS  PubMed  Google Scholar 

  • Lutticken C, Wegenka UM, Yuan J (1994) Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science 263:89–92

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Fernández MA, Fresno M (1998) The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog Neurobiol 56:307–340

    Article  PubMed  Google Scholar 

  • Murakami M, Hibi M, Nakagawa N (1993) IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260:1808–1810

    Article  CAS  PubMed  Google Scholar 

  • Namikawa K, Honma M, Abe K, Takeda M, Mansur K, Obata T, Miwa A, Okado H, Kiyama H (2000) Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration. J Neurosci 20:2875–2886

    CAS  PubMed  Google Scholar 

  • Narazaki M, Witthuhn BA, Yoshida K (1994) Activation of JAK2 kinase mediated by the interleukin-6 signal transducer gp130. Proc Natl Acad Sci USA 91:2285–2289

    Article  CAS  PubMed  Google Scholar 

  • Noshita N, Lewén A, Sugawara T, Chan PH (2001) Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21:1442–1450

    Article  CAS  PubMed  Google Scholar 

  • Orellana DI, Quintanilla RA, Gonzalez-Billault C, Maccioni RB (2005) Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons. Neurotox Res 8:295–304

    Article  CAS  PubMed  Google Scholar 

  • Peng YP, Qiu YH, Lu JH, Wang JJ (2005) Interleukin-6 protects cultured cerebellar granule neurons against glutamate-induced neurotoxicity. Neurosci Lett 374:192–196

    Article  CAS  PubMed  Google Scholar 

  • Pizzi M, Sarnico I, Boroni F, Benarese M, Dreano M, Garotta G, Valerio A, Spano P (2004) Prevention of neuron and oligodendrocyte degeneration by interleukin-6 (IL-6) and IL-6 receptor/IL-6 fusion protein in organotypic hippocampal slices. Mol Cell Neurosci 25:301–311

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Gruol DL (2003) Interleukin-6, β-amyloid peptide and NMDA interactions in rat cortical neurons. J Neuroimmunol 139:51–57

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Parsons KL, Gruol DL (1995) Interleukin-6 selectively enhances the intracellular calcium response to NMDA in developing CNS neurons. J Neurosci 15:6688–6699

    CAS  PubMed  Google Scholar 

  • Qiu Z, Sweeney DD, Netzeband JG, Gruol DL (1998) Chronic interleukin-6 alters NMDA receptor-mediated membrane responses and enhances neurotoxicity in developing CNS neurons. J Neurosci 18:10445–10456

    CAS  PubMed  Google Scholar 

  • Sadowski HB, Shuai K, Darnell JE Jr, Gilman MZ (1993) A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261:1739–1744

    Article  CAS  PubMed  Google Scholar 

  • Satriotomo I, Bowen KK, Vemuganti R (2006) JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. J Neurochem 98:1353–1368

    Article  CAS  PubMed  Google Scholar 

  • Schöbitz B, de Kloet ER, Sutanto W, Holsboer F (1993) Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Eur J Neurosci 5:1426–1435

    Article  PubMed  Google Scholar 

  • Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819

    Article  CAS  PubMed  Google Scholar 

  • Thier M, März P, Otten U, Weis J, Rose-John S (1999) Interleukin-6 (IL-6) and its soluble receptor support survival of sensory neurons. J Neurosci Res 55:411–422

    Article  CAS  PubMed  Google Scholar 

  • Toulmond S, Vige X, Fage D, Benavides J (1992) Local infusion of interleukin-6 attenuates the neurotoxic effects of NMDA on rat striatal cholinergic neurons. Neurosci Lett 144:49–52

    Article  CAS  PubMed  Google Scholar 

  • Van Wagoner NJ, Benveniste EN (1999) Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol 100:124–139

    Article  PubMed  Google Scholar 

  • Wang XQ, Peng YP, Lua JH, Cao BB, Qiu YH (2009) Neuroprotection of interleukin-6 against NMDA attack and its signal transduction by JAK and MAPK. Neurosci Lett 450:122–126

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Sawamoto K, Suzuki S, Suzuki N, Adachi K, Kawase T, Mihara M, Ohsugi Y, Abe K, Okano H (2005) Blockade of interleukin-6 signaling aggravates ischemic cerebral damage in mice: possible involvement of STAT3 activation in the protection of neurons. J Neurochem 94:459–468

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Horvitz HR (2004) A first insight into the molecular mechanisms of apoptosis. Cell 116:53–56

    Article  Google Scholar 

  • Zhong Z, Wen Z, Darnell JE Jr (1994) STAT3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95–98

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants 2007-5 for Excellent Sci-Tech Innovation Teams in Universities from the Educational Department of Jiangsu Province of China, H200761 from the Health Department of Jiangsu Province of China, 30870819 and 30870929 from the National Natural Science Foundation of China, and K2008006 and K2008019 from the Nantong Applied Research Program of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Hua Qiu or Yu-Ping Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Qiu, YH., Li, B. et al. Neuroprotection of Interleukin-6 Against NMDA-Induced Apoptosis and Its Signal-Transduction Mechanisms. Neurotox Res 19, 484–495 (2011). https://doi.org/10.1007/s12640-010-9215-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9215-x

Keywords

Navigation