Skip to main content

Advertisement

Log in

Dopamine System Dysregulation by the Ventral Subiculum as the Common Pathophysiological Basis for Schizophrenia Psychosis, Psychostimulant Abuse, and Stress

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The dopamine system is under multiple forms of regulation, and in turn provides effective modulation of system responses. Dopamine neurons are known to exist in several states of activity. The population activity, or the proportion of dopamine neurons firing spontaneously, is controlled by the ventral subiculum of the hippocampus. In contrast, burst firing, which is proposed to be the behaviorally salient output of the dopamine system, is driven by the brainstem pedunculopontine tegmentum (PPTg). When an animal is exposed to a behaviorally salient stimulus, the PPTg elicits a burst of action potentials in the dopamine neurons. However, this bursting only occurs in the portion of the dopamine neuron population that is firing spontaneously. This proportion is regulated by the ventral subiculum. Therefore, the ventral subiculum provides the gain, or the amplification factor, for the behaviorally salient stimulus. The ventral subiculum itself is proposed to carry information related to the environmental context. Thus, the ventral subiculum will adjust the responsivity of the dopamine system based on the needs of the organism and the characteristics of the environment. However, this finely tuned system can be disrupted in disease states. In schizophrenia, a disruption of interneuronal regulation of the ventral subiculum is proposed to lead to an overdrive of the dopamine system, rendering the system in a constant hypervigilant state. Moreover, amphetamine sensitization and stressors also appear to cause an abnormal dopaminergic drive. Such an interaction could underlie the risk factors of drug abuse and stress in the precipitation of a psychotic event. On the other hand, this could point to the ventral subiculum as an effective site of therapeutic intervention in the treatment or even the prevention of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52:1655–1658

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Dolorfo C, Alvarez-Royo P (1991) Organization of CA1 projections to the subiculum: a PHA-L analysis in the rat. Hippocampus 1:415–435

    Article  PubMed  CAS  Google Scholar 

  • Angrist B, Sathananthan G, Wilk S, Gershon S (1974) Amphetamine psychosis: behavioral and biochemical aspects. J Psychiatr Res 11:13–23

    Article  PubMed  CAS  Google Scholar 

  • Angrist B, Thompson H, Shopsin B, Gershon S (1975) Clinical studies with dopamine-receptor stimulants. Psychopharmacologia 44:273–280

    Article  PubMed  CAS  Google Scholar 

  • Anstrom KK, Woodward DJ (2005) Restraint increases dopaminergic burst firing in awake rats. Neuropsychopharmacology 30:1832–1840

    Article  PubMed  CAS  Google Scholar 

  • Antelman SM, Eichler AJ, Black CA, Kocan D (1980) Interchangeability of stress and amphetamine in sensitization. Science 207:329–331

    Article  PubMed  CAS  Google Scholar 

  • Arseneault L, Cannon M, Poulton R, Murray R, Caspi A, Moffitt TE (2002) Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. Br Med J 325:1212–1213

    Article  Google Scholar 

  • Badiani A, Browman KE, Robinson TE (1995) Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res 674:291–298

    Article  PubMed  CAS  Google Scholar 

  • Basar-Eroglu C, Brand A, Hildebrandt H, Karolina Kedzior K, Mathes B, Schmiedt C (2007) Working memory related gamma oscillations in schizophrenia patients. Int J Psychophysiol 64:39–45

    Article  PubMed  Google Scholar 

  • Benes FM (1997) The role of stress and dopamine-GABA interactions in the vulnerability for schizophrenia. J Psychiatr Res 31:257–275

    Article  PubMed  CAS  Google Scholar 

  • Beuger M, van Kammen DP, Kelley ME, Yao J (1996) Dopamine turnover in schizophrenia before and after haloperidol withdrawal. CSF, plasma, and urine studies. Neuropsychopharmacology 15:75–86

    Article  PubMed  CAS  Google Scholar 

  • Bunney BS, Grace AA (1978) Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sci 23:1715–1727

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    Article  CAS  Google Scholar 

  • Caspi A, Moffitt TE, Cannon M, McClay J, Murray R, Harrington H, Taylor A, Arseneault L, Williams B, Braithwaite A, Poulton R, Craig IW (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene × environment interaction. Biol Psychiatry 57:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Castro SL, Zigmond MJ (2001) Stress-induced increase in extracellular dopamine in striatum: role of glutamatergic action via N-methyl-D-aspartate receptors in substantia nigra. Brain Res 901:47–54

    Article  PubMed  CAS  Google Scholar 

  • Chen CK, Lin SK, Sham PC, Ball D, Loh EW, Hsiao CC, Chiang YL, Ree SC, Lee CH, Murray RM (2003) Pre-morbid characteristics and co-morbidity of methamphetamine users with and without psychosis. Psychol Med 33:1407–1414

    Article  PubMed  CAS  Google Scholar 

  • Chergui K, Charlety PJ, Akaoka H, Saunier CF, Brunet JL, Buda M, Svensson TH, Chouvet G (1993) Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur J Neurosci 5:137–144

    Article  PubMed  CAS  Google Scholar 

  • Cho RY, Konecky RO, Carter CS (2005) Impairments in gamma band syncrhonization and context processing in schizophrenia. Schizophr Bull 31:450–451

    Article  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  • Crombag HS, Badiani A, Maren S, Robinson TE (2000) The role of contextual versus discrete drug-associated cues in promoting the induction of psychomotor sensitization to intravenous amphetamine. Behav Brain Res 116:1–22

    Article  PubMed  CAS  Google Scholar 

  • Fanselow MS (2000) Contextual fear, gestalt memories, and the hippocampus. Behav Brain Res 110:73–81

    Article  PubMed  CAS  Google Scholar 

  • Finlay JM, Zigmond MJ, Abercrombie ED (1995) Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 64:619–628

    Article  PubMed  CAS  Google Scholar 

  • Flagstad P, Mork A, Glenthoj BY, van Beek J, Michael-Titus AT, Didriksen M (2004) Disruption of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens. Neuropsychopharmacology 29:2052–2064

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB, Todd CL, Grace AA (2001a) Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21:4915–4922

    PubMed  CAS  Google Scholar 

  • Floresco SB, Todd CL, Grace AA (2001b) Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21:4915–4922

    PubMed  CAS  Google Scholar 

  • Floresco SB, West AR, Ash B, Moore H, Grace AA (2003a) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB, West AR, Ash B, Moore H, Grace AA (2003b) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973

    Article  PubMed  CAS  Google Scholar 

  • Fox KM, Grace AA (2009) Peripubertal administration of diazepam prevents dopaminergic pathophysiology in the MAM developmental model of schizophrenia. 2009 Neuroscience Meeting Planner, Chicago, IL Society for Neuroscience 2009 Online Program 341.6

  • French SJ, Hailstone JC, Totterdell S (2003) Basolateral amygdala efferents to the ventral subiculum preferentially innervate pyramidal cell dendritic spines. Brain Res 981:160–167

    Article  PubMed  CAS  Google Scholar 

  • Friedman A, Sienkiewicz J (1991) Psychotic complications of long-term levodopa treatment of Parkinson’s disease. Acta Neurol Scand 84:111–113

    Article  PubMed  CAS  Google Scholar 

  • Gallinat J, Winterer G, Herrmann CS, Senkowski D (2004) Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 115:1863–1874

    Article  PubMed  Google Scholar 

  • Giladi N, Treves TA, Paleacu D, Shabtai H, Orlov Y, Kandinov B, Simon ES, Korczyn AD (2000) Risk factors for dementia, depression and psychosis in long-standing Parkinson’s disease. J Neural Transm 107:59–71

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Hernandez JA, Cedeno I, Pita-Alcorta C, Galan L, Aubert E, Figueredo-Rodriguez P (2003) Induced oscillations and the distributed cortical sources during the Wisconsin card sorting test performance in schizophrenic patients: new clues to neural connectivity. Int J Psychophysiol 48:11–24

    Article  PubMed  CAS  Google Scholar 

  • Gottesman II, Shields J (1971) Schizophrenia: geneticism and environmentalism. Hum Hered 21:517–522

    Article  PubMed  CAS  Google Scholar 

  • Gottesman II, Shields J (1976) A critical review of recent adoption, twin, and family studies of schizophrenia: behavioral genetics perspectives. Schizophr Bull 2:360–401

    PubMed  CAS  Google Scholar 

  • Gourevitch R, Rocher C, Le Pen G, Krebs MO, Jay TM (2004) Working memory deficits in adult rats after prenatal disruption of neurogenesis. Behav Pharmacol 15:287–292

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (2004) Developmental dysregulation of the dopamine system and the pathophysiology of schizophrenia. In: Keshavan MS, Kennedy JL, Murray RM (eds) Neurodevelopment and schizophrenia. Cambridge University Press, Cambridge, pp 273–294

    Chapter  Google Scholar 

  • Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4:2866–2876

    PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1985) Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity. Brain Res 333:271–284

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Moore H (1998) Regulation of information flow in the nucleus accumbens: a model for the pathophysiology of schizophrenia. In: Lenzenweger MF, Dworkin RH (eds) Origins and development of schizophrenia: advances in experimental psychopathology. American Psychological Association Press, Washington, pp 123–157

    Chapter  Google Scholar 

  • Grace AA, Bunney BS, Moore H, Todd CL (1997) Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci 20:31–37

    Article  PubMed  CAS  Google Scholar 

  • Hajos N, Katona I, Naiem SS, MacKie K, Ledent C, Mody I, Freund TF (2000) Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci 12:3239–3249

    Article  PubMed  CAS  Google Scholar 

  • Heckers S (2001) Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11:520–528

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Mueller NK (2006) Role of the ventral subiculum in stress integration. Behav Brain Res 174:215–224

    Article  PubMed  CAS  Google Scholar 

  • Hultman CM, Sparén P, Takei N, Murray RM, Cnattingus S (1999) Prenatal and perinatal risk factors for schizophrenia, affective psychosis, and reactive psychosis of early onset: case–control study. Br Med J 318:421–426

    CAS  Google Scholar 

  • Jarrard LE (1995) What does the hippocampus really do? Behav Brain Res 71:1–10

    Article  PubMed  CAS  Google Scholar 

  • Johnstone EC, Lawrie SM, Cosway R (2002) What does the Edinburgh high-risk study tell us about schizophrenia? Am J Med Genet (Neuropsychiatr Genet) 114:906–912

    Article  Google Scholar 

  • Jones P, Rodgers B, Murray R, Marmot M (1994) Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort study. Lancet 344:1398–1402

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Remington G (2001) Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol Psychiatry 50:873–883

    Article  PubMed  CAS  Google Scholar 

  • Karson MA, Tang AH, Milner TA, Alger BE (2009) Synaptic cross talk between perisomatic-targeting interneuron classes expressing cholecystokinin and parvalbumin in hippocampus. J Neurosci 29:4140–4154

    Article  PubMed  CAS  Google Scholar 

  • Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558

    PubMed  CAS  Google Scholar 

  • Kegeles LS, Shungu DC, Anjilvel S, Chan S, Ellis SP, Xanthopoulos E, Malaspina D, Gorman JM, Mann JJ, Laruelle M, Kaufmann CA (2000) Hippocampal pathology in schizophrenia: magnetic resonance imaging and spectroscopy studies. Psychiatry Res 98:163–175

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M (1998) Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Q J Nucl Med 42:211–221

    PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A (1999) Dopamine as the wind of psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13:358–371

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, Grace AA (2006a) The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction. Cell Mol Life Sci 63:1597–1613

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, Grace AA (2006b) Cannabinoids potentiate emotional learning plasticity in neurons of the medial prefrontal cortex through basolateral amygdala Inputs. J Neurosci 26:6458–6468

    Article  PubMed  CAS  Google Scholar 

  • Le Pen G, Gourevitch R, Hazane F, Hoareau C, Jay TM, Krebs MO (2006) Peri-pubertal maturation after developmental disturbance: a model for psychosis onset in the rat. Neuroscience 143:395–405

    Article  PubMed  CAS  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  CAS  Google Scholar 

  • Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Cruz DA, Melchitzky DS, Pierri JN (2001) Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. Am J Psychiatry 158:1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Lipski WJ, Grace AA (2008) Neurons in the ventral subiculum are activated by noxious stimuli and are modulated by noradrenergic afferents. Program No 1951, 2008 Neuroscience Meeting Planner Washington, DC, Society for Neuroscience, 2008 Online

  • Lodge DJ, Grace AA (2006a) The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci USA 103:5167–5172

    Article  PubMed  CAS  Google Scholar 

  • Lodge DJ, Grace AA (2006b) The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuropsychopharmacology 31:1356–1361

    Article  PubMed  CAS  Google Scholar 

  • Lodge DJ, Grace AA (2006c) The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuopsychopharmacology 31:1356–1361

    Article  CAS  Google Scholar 

  • Lodge DJ, Grace AA (2007) Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci 27:11424–11430

    Article  PubMed  CAS  Google Scholar 

  • Lodge DJ, Grace AA (2008) Amphetamine activation of hippocampal drive of mesolimbic dopamine neurons: a mechanism of behavioral sensitization. J Neurosci 28:7876–7882

    Article  PubMed  CAS  Google Scholar 

  • Lodge DJ, Behrens MM, Grace AA (2009) A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci 29:2344–2354

    Article  PubMed  CAS  Google Scholar 

  • Malaspina D, Storer S, Furman V, Esser P, Printz D, Berman A, Lignelli A, Gorman J, Van Heertum R (1999) SPECT study of visual fixation in schizophrenia and comparison subjects. Biol Psychiatry 46:89–93

    Article  PubMed  CAS  Google Scholar 

  • Maren S (1999) Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of Pavlovian fear conditioning in rats. Behav Neurosci 113:283–290

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263

    Article  PubMed  CAS  Google Scholar 

  • McDonald C, Murray RM (2000) Early and late environmental risk factors for schizophrenia. Brain Res Brain Res Rev 31:130–137

    Article  PubMed  CAS  Google Scholar 

  • Medoff DR, Holcomb HH, Lahti AC, Tamminga CA (2001) Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus 11:543–550

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg AS, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, Berman KF (2005) Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 62:379–386

    Article  PubMed  Google Scholar 

  • Moore H, Grace AA (1997) Anatomical changes in limbic structures produced by methylazoxymethanol acetate (MAM) during brain development are associated with changes in physiological interactions among afferents to the nucleus accumbens. Soc Neurosci Abs 23:2378

    Google Scholar 

  • Moore H, Rose HJ, Grace AA (2001a) Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology 24:410–419

    Article  PubMed  CAS  Google Scholar 

  • Moore H, Ghajarnia M, Geyer M, Jentsch JD, Grace AA (2001b) Selective disruption of prefrontal and limbic corticostriatal circuits by prenatal exposure to the DNA methylation agent methylazoxymethanol acetate (MAM): anatomical, neurophysiological and behavioral studies. Schizophr Res 49:48

    Google Scholar 

  • Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA (2006) A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry 60:253–264

    Article  PubMed  CAS  Google Scholar 

  • O’Doherty F (1991) Is drug use a response to stress? Drug Alcohol Depend 29:97–106

    Article  PubMed  Google Scholar 

  • O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109

    Article  PubMed  Google Scholar 

  • O’Mara S (2005) The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. J Anat 207:271–282

    Article  PubMed  Google Scholar 

  • Oleskevich S, Descarries L, Lacaille JC (1989) Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat. J Neurosci 9:3803–3815

    PubMed  CAS  Google Scholar 

  • Pacchioni AM, Gioino G, Assis A, Cancela LM (2002) A single exposure to restraint stress induces behavioral and neurochemical sensitization to stimulating effects of amphetamine: involvement of NMDA receptors. Ann N Y Acad Sci 965:233–246

    Article  PubMed  CAS  Google Scholar 

  • Pan WX, Hyland B (2005) Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J Neurosci (Online) 25:4725–4732

    CAS  Google Scholar 

  • Post RM (1980) Intermittent versus continuous stimulation: effect of time interval on the development of sensitization or tolerance. Life Sci 26:1275–1282

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Fink E, Carpenter WT Jr, Goodwin FK (1975) Cerebrospinal fluid amine metabolites in acute schizophrenia. Arch Gen Psychiatry 32:1063–1069

    PubMed  CAS  Google Scholar 

  • Robbe D, Montgomery SM, Thome A, Rueda-Orozco PE, McNaughton BL, Buzsaki G (2006) Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nat Neurosci 9:1526–1533

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(Suppl 2):S91–S117

    PubMed  Google Scholar 

  • Rosenkranz JA, Grace AA (2002a) Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature 417:282–287

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz JA, Grace AA (2002b) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22:324–337

    PubMed  CAS  Google Scholar 

  • Rosenkranz JA, Moore H, Grace AA (2003) The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 23:11054–11064

    PubMed  CAS  Google Scholar 

  • Saks ER (2007) The center cannot hold: my journey through madness. Hyperion, New York

    Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925–935

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM, Uno H, Rebert CS, Finch CE (1990) Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 10:2897–2902

    PubMed  CAS  Google Scholar 

  • Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22:565–572

    Article  PubMed  CAS  Google Scholar 

  • Schroeter S, Apparsundaram S, Wiley RG, Miner LH, Sesack SR, Blakely RD (2000) Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J Comp Neurol 420:211–232

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1998) The phasic reward signal of primate dopamine neurons. Adv Pharmacol 42:686–690

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719

    Article  PubMed  CAS  Google Scholar 

  • Sharp PE (1999) Complimentary roles for hippocampal versus subicular/entorhinal place cells in coding place, context, and events. Hippocampus 9:432–443

    Article  PubMed  CAS  Google Scholar 

  • Smith ID, Grace AA (1992) Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 12:287–303

    Article  PubMed  CAS  Google Scholar 

  • Talamini LM, Koch T, Luiten PG, Koolhaas JM, Korf J (1999) Interruptions of early cortical development affect limbic association areas and social behaviour in rats; possible relevance for neurodevelopmental disorders. Brain Res 847:105–120

    Article  PubMed  CAS  Google Scholar 

  • Thompson JL, Pogue-Geile MF, Grace AA (2004) The interactions among developmental pathology, dopamine, and stress as a model for the age of onset of schizophrenia symptomatology. Schizophr Bull 30:875–900

    PubMed  Google Scholar 

  • Tsai CT, Mogenson GJ, Wu M, Yang CR (1989) A comparison of the effects of electrical stimulation of the amygdala and hippocampus on subpallidal output neurons to the pedunculopontine nucleus. Brain Res 494:22–29

    Article  PubMed  CAS  Google Scholar 

  • Tsou K, Mackie K, Sanudo-Pena MC, Walker JM (1999) Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience 93:969–975

    Article  PubMed  CAS  Google Scholar 

  • Tsuang M (2000) Schizophrenia: genes and environment. Biol Psychiatry 47:210–220

    Article  PubMed  CAS  Google Scholar 

  • Valenti O, Grace AA (2008) Acute and repeated stress induce a pronounced and sustained activation of VTA DA neuron population activity. Program no 47911, 2008 Neuroscience Meeting Planner Washington, DC; Society for Neuroscience (in press)

  • van Kammen DP, van Kammen WB, Mann LS, Seppala T, Linnoila M (1986) Dopamine metabolism in the cerebrospinal fluid of drug-free schizophrenic patients with and without cortical atrophy. Arch Gen Psychiatry 43:978–983

    PubMed  Google Scholar 

  • Vezina P, Giovino AA, Wise RA, Stewart J (1989) Environment-specific cross-sensitization between the locomotor activating effects of morphine and amphetamine. Pharmacol Biochem Behav 32:581–584

    Article  PubMed  CAS  Google Scholar 

  • West AR, Grace AA (2000) Striatal nitric oxide signaling regulates the neuronal activity of midbrain dopamine neurons in vivo. J Neurophysiol 83:1796–1808

    PubMed  CAS  Google Scholar 

  • Wong DF et al (2006) Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacology 31:2716–2727

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZJ, Reynolds GP (2002) A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55:1–10

    Article  PubMed  Google Scholar 

  • Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ, Fadok JP, Darvas M, Kim MJ, Mizumori SJ, Paladini CA, Phillips PE, Palmiter RD (2009) Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc Natl Acad Sci USA 106:7281–7288

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Grace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grace, A.A. Dopamine System Dysregulation by the Ventral Subiculum as the Common Pathophysiological Basis for Schizophrenia Psychosis, Psychostimulant Abuse, and Stress. Neurotox Res 18, 367–376 (2010). https://doi.org/10.1007/s12640-010-9154-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9154-6

Keywords

Navigation