Skip to main content

Advertisement

Log in

Differential Effects of Tityus bahiensis Scorpion Venom on Tetrodotoxin-Sensitive and Tetrodotoxin-Resistant Sodium Currents

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

We examined modification of sodium channel gating by Tityus bahiensis scorpion venom (TbScV), and compared effects on native tetrodotoxin-sensitive and tetrodotoxin-resistant sodium currents from rat dorsal root ganglion neurons and cardiac myocytes. In neurons, TbScV dramatically reduced the rate of sodium current inactivation, increased current amplitude, and caused a negative shift in the voltage-dependence of activation and inactivation of tetrodotoxin-sensitive channels. Enhanced activation of modified sodium channels was independent of a depolarizing prepulse. We identified two components of neuronal tetrodotoxin-resistant current with biophysical properties similar to those described for NaV1.8 and NaV1.9. In contrast to its effects on neuronal tetrodotoxin-sensitive current, TbScV caused a small decrease in neuronal tetrodotoxin-resistant sodium current amplitude and the gating modifications described above were absent. A third tetrodotoxin-resistant current, NaV1.5 recorded in rat cardiac ventricular myocytes, was inhibited approximately 50% by TbScV, and the remaining current exhibited markedly slowed activation and inactivation. In conclusion, TbScV has very different effects on different sodium channel isoforms. Among the neuronal types, currents resistant to tetrodotoxin are also resistant to gating modification by TbScV. The cardiac tetrodotoxin-resistant current has complex sensitivity that includes both inhibition of current amplitude and slowing of activation and inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarenga LM, Diniz CR, Granier C, Chávez-Olórtegui C (2002) Induction of neutralizing antibodies against Tityus serrulatus scorpion toxins by immunization with a mixture of defined synthetic epitopes. Toxicon 40:89–95

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CM, Bezanilla F (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol 63:533–552

    Article  CAS  PubMed  Google Scholar 

  • Becerril B, Corona M, Coronas FI, Zamudio F, Calderon-Aranda ES, Fletcher PL, Martin BM, Possani LD (1996) Toxic peptides and genes encoding toxin gamma of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus. Biochem J 313(Pt 3):753–760

    CAS  PubMed  Google Scholar 

  • Bonilha L, Cendes F, Ghizoni E, Vieira RJ, Li LM (2004) Epilepsy due to a destructive brain lesion caused by a scorpion sting. Arch Neurol 61:1294–1296

    Article  PubMed  Google Scholar 

  • Borges A, Sousa LD, Espinoza J, Melo MM, Santos RG, Kalapothakis E, Valadares D, Chávez-Olórtegui C (2008) Characterization of Tityus scorpion venoms using synaptosome binding assays and reactivity towards Venezuelan and Brazilian antivenoms. Toxicon 51:66–79

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bucherl W (1953) Scorpions and scorpionism in Brazil. 2. Effect of the venom of Tityus serrulatus and T. bahiensis on mice. Mem Inst Butantan 25:83–108

    CAS  PubMed  Google Scholar 

  • Cahalan MD (1975) Modification of sodium channel gating in frog myelinated nerve fibres by Centruroides sculpturatus scorpion venom. J Physiol 244:511–534

    CAS  PubMed  Google Scholar 

  • Campos FV, Moreira TH, Beirão PSL, Cruz JS (2004) Veratridine modifies the TTX-resistant Na+ channels in rat vagal afferent neurons. Toxicon 43:401–406

    Article  CAS  PubMed  Google Scholar 

  • Campos FV, Chanda B, Beirão PSL, Bezanilla F (2007) beta-Scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel. J Gen Physiol 130:257–268

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20:15–43

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2003) International Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol Rev 55:575–578

    Article  CAS  PubMed  Google Scholar 

  • Cestèle S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883–892

    Article  PubMed  Google Scholar 

  • Cestèle S, Qu Y, Rogers JC, Rochat H, Scheuer T, Catterall WA (1998) Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3–S4 loop in domain II. Neuron 21:919–931

    Article  PubMed  Google Scholar 

  • Cestèle S, Yarov-Yarovoy V, Qu Y, Sampieri F, Scheuer T, Catterall WA (2006) Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin. J Biol Chem 281:21332–21344

    Article  PubMed  Google Scholar 

  • Choi J-S, Hudmon A, Waxman SG, Dib-Hajj SD (2006) Calmodulin regulates current density and frequency-dependent inhibition of sodium channel Nav1.8 in DRG neurons. J Neurophysiol 96:97–108

    Article  CAS  PubMed  Google Scholar 

  • Corrado AP, Antonio A, Diniz CR (1968) Brazilian scorpion venom (Tityus serrulatus), an unusual sympathetic postganglionic stimulant. J Pharmacol Exp Ther 164:253–258

    CAS  PubMed  Google Scholar 

  • Coste B, Osorio N, Padilla F, Crest M, Delmas P (2004) Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol Cell Neurosci 26:123–134

    Article  CAS  PubMed  Google Scholar 

  • Coste B, Crest M, Delmas P (2007) Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J Gen Physiol 129:57–77

    Article  CAS  PubMed  Google Scholar 

  • de la Vega RCR, Possani LD (2007) Novel paradigms on scorpion toxins that affects the activating mechanism of sodium channels. Toxicon 49:171–180

    Article  PubMed  Google Scholar 

  • Eriksson MAL, Roux B (2002) Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles. Biophys J 83:2595–2609

    Article  CAS  PubMed  Google Scholar 

  • Gomez MV, Diniz CR (1966) Separation of toxic components from the Brazilian scorpion Tityus serrulatus venom. Mem Inst Butantan 33:899–902

    CAS  PubMed  Google Scholar 

  • Gueron M, Ilia R, Sofer S (1992) The cardiovascular system after scorpion envenomation. A review. J Toxicol Clin Toxicol 30:245–258

    Article  CAS  PubMed  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  • Herzog RI, Cummins TR, Waxman SG (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 86:1351–1364

    CAS  PubMed  Google Scholar 

  • Ikeda SR, Schofield GG (1987) Tetrodotoxin-resistant sodium current of rat nodose neurones: monovalent cation selectivity and divalent cation block. J Physiol 389:255–270

    CAS  PubMed  Google Scholar 

  • Kuo C-C, Chen W-Y, Yang Y-C (2004) Block of tetrodotoxin-resistant Na+ channel pore by multivalent cations: gating modification and Na+ flow dependence. J Gen Physiol 124:27–42

    Article  CAS  PubMed  Google Scholar 

  • Leão RM, Cruz JS, Diniz CR, Cordeiro MN, Beirão PS (2000) Inhibition of neuronal high-voltage activated calcium channels by the omega-phoneutria nigriventer Tx3-3 peptide toxin. Neuropharmacology 39:1756–1767

    Article  PubMed  Google Scholar 

  • Lima MED, Martin MF, Diniz CR, Rochat H (1986) Tityus serrulatus toxin VII bears pharmacological properties of both beta-toxin and insect toxin from scorpion venoms. Biochem Biophys Res Commun 139:296–302

    Article  PubMed  Google Scholar 

  • Maier SKG, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR, Catterall WA, Scheuer T (2003) An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci USA 100:3507–3512

    Article  CAS  PubMed  Google Scholar 

  • Matsuki N, Hermsmeyer K (1983) Tetrodotoxin-sensitive Na+ channels in isolated single cultured rat myocardial cells. Am J Physiol 245:C381–C387

    CAS  PubMed  Google Scholar 

  • Mesquita MBS, Moraes-Santos T, Moraes MFD (2003) Centrally injected tityustoxin produces the systemic manifestations observed in severe scorpion poisoning. Toxicol Appl Pharmacol 187:58–66

    Article  CAS  PubMed  Google Scholar 

  • Nascimento EB, Costa KA, Bertollo CM, Oliveira ACP, Rocha LTS, Souza ALS, Glória MBA, Moraes-Santos T, Coelho MM (2005) Pharmacological investigation of the nociceptive response and edema induced by venom of the scorpion Tityus serrulatus. Toxicon 45:585–593

    Article  CAS  PubMed  Google Scholar 

  • Nascimento DG, Rates B, Santos DM, Verano-Braga T, Barbosa-Silva A, Dutra AAA, Biondi I, Martin-Eauclaire MF, Lima MED, Pimenta AMC (2006) Moving pieces in a taxonomic puzzle: venom 2D-LC/MS and data clustering analyses to infer phylogenetic relationships in some scorpions from the Buthidae family (Scorpiones). Toxicon 47:628–639

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa AK, Caricati CP, Lima ML, Santos MCD, Kipnis TL, Eickstedt VR, Knysak I, Silva MHD, Higashi HG, Silva WDD (1994) Antigenic cross-reactivity among the venoms from several species of Brazilian scorpions. Toxicon 32:989–998

    Article  CAS  PubMed  Google Scholar 

  • Nunan EA, Moraes MFD, Cardoso VN, Moraes-Santos T (2003) Effect of age on body distribution of Tityustoxin from Tityus serrulatus scorpion venom in rats. Life Sci 73:319–325

    Article  CAS  PubMed  Google Scholar 

  • Oliva C, Cohen IS, Mathias RT (1988) Calculation of time constants for intracellular diffusion in whole cell patch clamp configuration. Biophys J 54:791–799

    Article  CAS  PubMed  Google Scholar 

  • Pimenta AM, Martin-Eauclaire M, Rochat H, Figueiredo SG, Kalapothakis E, Afonso LC, Lima MED (2001) Purification, amino-acid sequence and partial characterization of two toxins with anti-insect activity from the venom of the South American scorpion Tityus bahiensis (Buthidae). Toxicon 39:1009–1019

    Article  CAS  PubMed  Google Scholar 

  • Possani LD, Merino E, Corona M, Bolivar F, Becerril B (2000) Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie 82:861–868

    Article  CAS  PubMed  Google Scholar 

  • Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA (1996) Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J Biol Chem 271:15950–15962

    Article  CAS  PubMed  Google Scholar 

  • Rugiero F, Mistry M, Sage D, Black JA, Waxman SG, Crest M, Clerc N, Delmas P, Gola M (2003) Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. J Neurosci 23:2715–2725

    CAS  PubMed  Google Scholar 

  • Rush AM, Cummins TR, Waxman SG (2007) Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 579:1–14

    Article  CAS  PubMed  Google Scholar 

  • Saab CY, Cummins TR, Dib-Hajj SD, Waxman SG (2002) Molecular determinant of Na(v)1.8 sodium channel resistance to the venom from the scorpion Leiurus quinquestriatus hebraeus. Neurosci Lett 331:79–82

    Article  CAS  PubMed  Google Scholar 

  • Trequattrini C, Zamudio FZ, Petris A, Prestipino G, Possani LD, Franciolini F (1995) Tityus bahiensis toxin IV-5b selectively affects Na channel inactivation in chick dorsal root ganglion neurons. Comp Biochem Physiol A Physiol 112:21–28

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ou S-W, Wang Y-J, Kameyama M, Kameyama A, Zong Z-H (2009) Analysis of four novel variants of Nav1.5/SCN5A cloned from the brain. Neurosci Res 64:339–347

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Cao Z, Yi H, Jiang D, Mao X, Liu H, Li W (2004) Simulation of the interaction between ScyTx and small conductance calcium-activated potassium channel by docking and MM-PBSA. Biophys J 87:105–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Silvia Guatimosim and Enéas de Morais Gomes for supplying dissociated cardiac myocytes. Supported by CNPq (Brasil), FAPEMIG (Brasil), PRPq/UFMG (Brasil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Kushmerick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moraes, E.R., Kalapothakis, E., Naves, L.A. et al. Differential Effects of Tityus bahiensis Scorpion Venom on Tetrodotoxin-Sensitive and Tetrodotoxin-Resistant Sodium Currents. Neurotox Res 19, 102–114 (2011). https://doi.org/10.1007/s12640-009-9144-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9144-8

Keywords

Navigation