Skip to main content

Advertisement

Log in

Increased Hippocampal Expression of the Divalent Metal Transporter 1 (DMT1) mRNA Variants 1B and +IRE and DMT1 Protein After NMDA-Receptor Stimulation or Spatial Memory Training

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

An Erratum to this article was published on 23 September 2009

Abstract

Iron is essential for crucial neuronal functions but is also highly toxic in excess. Neurons acquire iron through transferrin receptor-mediated endocytosis and via the divalent metal transporter 1 (DMT1). The N-terminus (1A, 1B) and C-terminus (+IRE, −IRE) splice variants of DMT1 originate four protein isoforms, all of which supply iron to cells. Diverse physiological or pathological conditions induce differential DMT1 variant expression, which are cell-type dependent. Hence, it becomes relevant to ascertain if activation of neuronal plasticity processes that require functional N-methyl d-aspartate (NMDA) receptors, including in vitro stimulation of NMDA receptor-mediated signaling and spatial memory training, selectively modify DMT1 variant expression. Here, we report for the first time that brief (5 min) exposure of primary hippocampal cultures to NMDA (50 μM) increased 24 h later the expression of DMT1-1B and DMT1+IRE, but not of DMT1−IRE mRNA. In contrast, endogenous DMT1 mRNA levels remained unaffected following 6 h incubation with brain-derived nerve factor. NMDA (25–50 μM) also enhanced DMT1 protein expression 24–48 h later; this enhancement was abolished by the transcription inhibitor actinomycin D and by the NMDA receptor antagonist MK-801, implicating NMDA receptors in de novo DMT1 expression. Additionally, spatial memory training enhanced DMT1-1B and DMT1+IRE expression and increased DMT1 protein content in rat hippocampus, where the exon1A variant was not found. These results suggest that NMDA receptor-dependent plasticity processes stimulate expression of the iron transporter DMT1-1B+IRE isoform, which presumably plays a significant role in hippocampal spatial memory formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Haeger P., Muñoz P., Carrasco M. A., Núñez, M. T. & Hidalgo C. Increased RyR and DMT1 expression in rat hippocampus after spatial memory training, 38th annual meeting of the Society for Neuroscience, Washington, USA, November 15–19, 2008.

Abbreviations

ACSF:

Artificial cerebrospinal fluid

Act D:

Actinomycin D

BDNF:

Brain-derived neurotrophic factor

DMT1:

Divalent metal transporter 1

GFAP:

Glial fibrillary acidic protein

IRE:

Iron response element

IRP:

Iron regulatory protein

MAP2:

Microtubule-associated protein 2

MWM:

Morris Water Maze

NF-Y:

Nuclear factor Y

NFκB:

Nuclear factor kappa B

NMDA:

N-Methyl d-aspartate

PBS:

Phosphate buffered saline

ROS:

Reactive oxygen species

References

  • Aguirre P, Mena N, Tapia V, Arredondo M, Nuñez MT (2005) Iron homeostasis in neuronal cells: a role for IREG1. BMC Neurosci 6:3

    Article  PubMed  Google Scholar 

  • Benkovic SA, Connor JR (1993) Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol 338:97–113

    Article  CAS  PubMed  Google Scholar 

  • Brar S, Henderson D, Schenck J, Zimmerman EA (2009) Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism. Arch Neurol 66:371–374

    Article  PubMed  Google Scholar 

  • Burdo JR, Martin J, Menzies SL, Dolan KG, Romano MA, Fletcher RJ, Garrick MD, Garrick LM, Connor JR (1999) Cellular distribution of iron in the brain of the Belgrade rat. Neuroscience 93:1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66:1198–1207

    Article  CAS  PubMed  Google Scholar 

  • Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AL, Duarte CB (2007) BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci 35:208–219

    Article  CAS  PubMed  Google Scholar 

  • Carlson ES, Tkac I, Magid R, O’Connor MB, Andrews NC, Schallert T, Gunshin H, Georgieff MK, Petryk A (2009) Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr 139:672–679

    Article  CAS  PubMed  Google Scholar 

  • Cheah JH, Kim SF, Hester LD, Clancy KW, Patterson SE 3rd, Papadopoulos V, Snyder SH (2006) NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51:431–440

    Article  CAS  PubMed  Google Scholar 

  • De Ferrari GV, Chacon MA, Barria MI, Garrido JL, Godoy JA, Olivares G, Reyes AE, Alvarez A, Bronfman M, Inestrosa NC (2003) Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Mol Psychiatry 8:195–208

    Article  PubMed  Google Scholar 

  • Deisseroth K, Mermelstein PG, Xia H, Tsien RW (2003) Signaling from synapse to nucleus: the logic behind the mechanisms. Curr Opin Neurobiol 13:354–365

    Article  CAS  PubMed  Google Scholar 

  • Du F, Qian ZM, Zhu L, Wu XM, Yung WH, Tsim TY, Ke Y (2009) L-DOPA neurotoxicity is mediated by up-regulation of DMT1-IRE expression. PLoS ONE 4:e4593

    Article  PubMed  Google Scholar 

  • Enomoto T, Ishibashi T, Tokuda K, Ishiyama T, Toma S, Ito A (2008) Lurasidone reverses MK-801-induced impairment of learning and memory in the Morris water maze and radial-arm maze tests in rats. Behav Brain Res 186:197–207

    Article  CAS  PubMed  Google Scholar 

  • Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Griffiths PD, Crossman AR (1996) Autoradiography of transferrin receptors in the human brain. Neurosci Lett 211:53–56

    Article  CAS  PubMed  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  CAS  PubMed  Google Scholar 

  • Haeger P, Andres ME, Forray MI, Daza C, Araneda S, Gysling K (2006) Estrogen receptors alpha and beta differentially regulate the transcriptional activity of the Urocortin gene. J Neurosci 26:4908–4916

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo C, Nuñez MT (2007) Calcium, iron and neuronal function. IUBMB Life 59:280–285

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo C, Carrasco MA, Muñoz P, Nuñez MT (2007) A role for reactive oxygen/nitrogen species and iron on neuronal synaptic plasticity. Antioxid Redox Signal 9:245–255

    Article  CAS  PubMed  Google Scholar 

  • Huang E, Ong WY, Go ML, Connor JR (2006) Upregulation of iron regulatory proteins and divalent metal transporter-1 isoforms in the rat hippocampus after kainate induced neuronal injury. Exp Brain Res 170:376–386

    Google Scholar 

  • Hubert N, Hentze MW (2002) Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci USA 99:12345–12350

    Article  CAS  PubMed  Google Scholar 

  • Jellinger K, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MB (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm Park Dis Dement Sect 2:327–340

    Article  CAS  PubMed  Google Scholar 

  • Jorgenson LA, Sun M, O’Connor M, Georgieff MK (2005) Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus. Hippocampus 15:1094–1102

    Article  CAS  PubMed  Google Scholar 

  • Kahlert S, Zundorf G, Reiser G (2005) Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytes. J Neurosci Res 79:262–271

    Article  CAS  PubMed  Google Scholar 

  • Kwik-Uribe CL, Gietzen D, German JB, Golub MS, Keen CL (2000) Chronic marginal iron intakes during early development in mice result in persistent changes in dopamine metabolism and myelin composition. J Nutr 130:2821–2830

    CAS  PubMed  Google Scholar 

  • Lerea LS, Butler LS, McNamara JO (1992) NMDA and non-NMDA receptor-mediated increase of c-fos mRNA in dentate gyrus neurons involves calcium influx via different routes. J Neurosci 12:2973–2981

    CAS  PubMed  Google Scholar 

  • Lilienbaum A, Israel A (2003) From calcium to NF-kappa B signaling pathways in neurons. Mol Cell Biol 23:2680–2698

    Article  CAS  PubMed  Google Scholar 

  • Lipsky RH, Xu K, Zhu D, Kelly C, Terhakopian A, Novelli A, Marini AM (2001) Nuclear factor kappaB is a critical determinant in N-methyl-d-aspartate receptor-mediated neuroprotection. J Neurochem 78:254–264

    Article  CAS  PubMed  Google Scholar 

  • Lis A, Paradkar PN, Singleton S, Kuo HC, Garrick MD, Roth JA (2005) Hypoxia induces changes in expression of isoforms of the divalent metal transporter (DMT1) in rat pheochromocytoma (PC12) cells. Biochem Pharmacol 69:1647–1655

    Article  CAS  PubMed  Google Scholar 

  • Lozoff B (2000) Perinatal iron deficiency and the developing brain. Pediatr Res 48:137–139

    Article  CAS  PubMed  Google Scholar 

  • Ludwiczek S, Theurl I, Muckenthaler MU, Jakab M, Mair SM, Theurl M, Kiss J, Paulmichl M, Hentze MW, Ritter M, Weiss G (2007) Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1. Nat Med 13:448–454

    Article  CAS  PubMed  Google Scholar 

  • McEchron MD, Paronish MD (2005) Perinatal nutritional iron deficiency reduces hippocampal synaptic transmission but does not impair short- or long-term synaptic plasticity. Nutr Neurosci 8:277–285

    Article  CAS  PubMed  Google Scholar 

  • Moos T, Oates PS, Morgan EH (1998) Expression of the neuronal transferrin receptor is age dependent and susceptible to iron deficiency. J Comp Neurol 398:420–430

    Article  CAS  PubMed  Google Scholar 

  • Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13

    Article  CAS  PubMed  Google Scholar 

  • Paradkar PN, Roth JA (2006) Nitric oxide transcriptionally down-regulates specific isoforms of divalent metal transporter (DMT1) via NF-kappaB. J Neurochem 96:1768–1777

    Article  CAS  PubMed  Google Scholar 

  • Paradkar PN, Roth JA (2007) Expression of the 1B isoforms of divalent metal transporter (DMT1) is regulated by interaction of NF-Y with a CCAAT-box element near the transcription start site. J Cell Physiol 211:183–188

    Article  CAS  PubMed  Google Scholar 

  • Pelizzoni I, Macco R, Zacchetti D, Grohovaz F, Codazzi F (2008) Iron and calcium in the central nervous system: a close relationship in health and sickness. Biochem Soc Trans 36:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Platenik J, Kuramoto N, Yoneda Y (2000) Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci 67:335–364

    Article  CAS  PubMed  Google Scholar 

  • Ranade SC, Rose A, Rao M, Gallego J, Gressens P, Mani S (2008) Different types of nutritional deficiencies affect different domains of spatial memory function checked in a radial arm maze. Neuroscience 152:859–866

    Article  CAS  PubMed  Google Scholar 

  • Ring RH, Alder J, Fennell M, Kouranova E, Black IB, Thakker-Varia S (2006) Transcriptional profiling of brain-derived-neurotrophic factor-induced neuronal plasticity: a novel role for nociceptin in hippocampal neurite outgrowth. J Neurobiol 66:361–377

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Murphy ER (2006) Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends Pharmacol Sci 27:141–148

    Article  CAS  PubMed  Google Scholar 

  • Salazar J, Mena N, Nuñez MT (2006) Iron dyshomeostasis in Parkinson’s disease. J Neural Transm 71(Suppl):205–213

    Article  CAS  Google Scholar 

  • Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Nuñez MT, Garrick MD, Raisman-Vozari R, Hirsch EC (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 105:18578–18583

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi A (2008) Synaptic plasticity-regulated gene expression: a key event in the long-lasting changes of neuronal function. Biol Pharm Bull 31:327–335

    Article  CAS  PubMed  Google Scholar 

  • Tamminga CA, Lahti AC, Medoff DR, Gao XM, Holcomb HH (2003) Evaluating glutamatergic transmission in schizophrenia. Ann N Y Acad Sci 1003:113–118

    Article  CAS  PubMed  Google Scholar 

  • Taneja V, Mishra K, Agarwal KN (1986) Effect of early iron deficiency in rat on the gamma-aminobutyric acid shunt in brain. J Neurochem 46:1670–1674

    CAS  PubMed  Google Scholar 

  • Wardrop SL, Richardson DR (2000) Interferon-gamma and lipopolysaccharide regulate the expression of Nramp2 and increase the uptake of iron from low relative molecular mass complexes by macrophages. Eur J Biochem 267:6586–6593

    Article  CAS  PubMed  Google Scholar 

  • Williams K, Wilson MA, Bressler J (2000) Regulation and developmental expression of the divalent metal-ion transporter in the rat brain. Cell Mol Biol (Noisy-le-grand) 46:563–571

    CAS  Google Scholar 

  • Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res 1001:108–117

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB (2008) Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus. Neurotox Res 14:45–56

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB, Green AR, Bloomfield MR, Mitchell BD, Heal DJ, Grahame-Smith DG (1980) The effects of iron deficiency on brain biogenic monoamine biochemistry and function in rats. Neuropharmacology 19:259–267

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondap-CEMC 15010006, Fondecyt postdoctoral and doctoral fellowship Grants 3070035 and 24080073, respectively, and by Millennium Scientific Initiative Grant ICM-P05-001-F. The authors thank the skillful professional assistance of N. Leal and P. Fernández and gratefully acknowledge Drs. M.A. Carrasco and K. Gysling for their insightful comments and support, and Dr. N. Inestrosa for kindly providing access to a Morris water maze system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Haeger.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12640-009-9107-0

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Hippocampal primary cultures are enriched in neurons. a Hippocampal cultures were visualized by differential interference contrast (DIC) microscopy (left) or inmunoreacted with MAP2 antibody as neuronal marker (right) and analyzed by confocal microscopy. b Confocal analysis of co-immunofluorescence of β-Tubulin III (red) as neuronal marker and GFAP (green) as glial cell marker, showing neuronal cell enrichment in the culture. Calibration bar, 20 μm (TIFF 3220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haeger, P., Álvarez, Á., Leal, N. et al. Increased Hippocampal Expression of the Divalent Metal Transporter 1 (DMT1) mRNA Variants 1B and +IRE and DMT1 Protein After NMDA-Receptor Stimulation or Spatial Memory Training. Neurotox Res 17, 238–247 (2010). https://doi.org/10.1007/s12640-009-9096-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9096-z

Keywords

Navigation