Skip to main content

Advertisement

Log in

Polyunsaturated Fatty Acids Protect Against Prion-Mediated Synapse Damage In Vitro

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

A loss of synapses is characteristic of the early stages of the prion diseases. Here we modelled the synapse damage that occurs in prion diseases by measuring the amount of synaptophysin, a pre-synaptic membrane protein essential for neurotransmission, in cortical or hippocampal neurones incubated with the disease associated isoform of the prion protein (PrPSc), or with the prion-derived peptide PrP82-146. The addition of PrPSc or PrP82-146 caused a dose-dependent reduction in the synaptophysin content of PrP wildtype neurones indicative of synapse damage. They did not affect the synaptophysin content of PrP null neurones. The loss of synaptophysin in PrP wildtype neurones was preceded by the accumulation of PrP82-146 within synapses. Since supplements containing polyunsaturated fatty acids (PUFA) are frequently taken for their perceived health benefits including reported amelioration of neurodegenerative conditions, the effects of some common PUFA on prion-mediated synapse damage were examined. Pre-treatment of cortical or hippocampal neurones with docosahexaenoic (DHA) or eicosapentaenoic acids (EPA) protected neurones against the loss of synaptophysin induced by PrP82-146 or PrPSc. This effect of DHA and EPA was selective as they did not alter the loss of synaptophysin induced by a snakevenom neurotoxin. The effects of DHA and EPA were associated with a significant reduction in the amount of FITC-PrP82-146 that accumulated within synapses. Such observations raise the possibility that supplements containing PUFA may protect against the synapse damage and cognitive loss seen during the early stages of prion diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Assayag K, Yakunin E, Loeb V, Selkoe DJ, Sharon R (2007) Polyunsaturated fatty acids induce {alpha}-synuclein-related pathogenic changes in neuronal cells. Am J Pathol 171:2000–2011

    Article  CAS  PubMed  Google Scholar 

  • Bate C, Williams A (2007) Squalestatin protects neurons and reduces the activation of cytoplasmic phospholipase A2 by Aβ1–42. Neuropharmacology 53:222–231

    Article  CAS  PubMed  Google Scholar 

  • Bate C, Salmona M, Diomede L, Williams A (2004) Squalestatin cures prion-infected neurones and protects against prion neurotoxicity. J Biol Chem 279:14983–14990

    Article  CAS  PubMed  Google Scholar 

  • Bate C, Tayebi M, Williams A (2008a) Ginkgolides protect against amyloid-β1–42-mediated synapse damage in vitro. Mol Neurodegener 3:1

    Article  PubMed  CAS  Google Scholar 

  • Bate C, Tayebi M, Diomede L, Salmona M, Williams A (2008b) Docosahexaenoic and eicosapentaenoic acids increase prion formation in neuronal cells. BMC Biol 6:39

    Article  PubMed  CAS  Google Scholar 

  • Bate C, Marshall V, Colombo L, Diomede L, Salmona M, Williams A (2008c) Docosahexaenoic and eicosapentaenoic acids increase neuronal death in response to HuPrP82–146 and Aβ1–42. Neuropharmacology 54:934–943

    Article  CAS  PubMed  Google Scholar 

  • Bazan NG (2005) Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 15:159–166

    Article  CAS  PubMed  Google Scholar 

  • Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379:339–343

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ (1997) Isolation and culture of adult rat hippocampal neurons. J Neurosci Meth 71:143–155

    Article  CAS  Google Scholar 

  • Brown DR (2001) Prion and prejudice: normal protein and the synapse. Trends Neurosci 24:85–90

    Article  CAS  PubMed  Google Scholar 

  • Chromy BA, Nowak RJ, Lambert MP, Viola KL, Chang L, Velasco PT, Jones BW, Fernandez SJ, Lacor PN, Horowitz P, Finch CE, Krafft GA, Klein WL (2003) Self-assembly of Abeta(1–42) into globular neurotoxins. Biochemistry 42:12749–12760

    Article  CAS  PubMed  Google Scholar 

  • Collinge J, Whittington MA, Sidle KCL, Smith CJ, Palmer MS, Clarke AR, Jefferys JGR (1994) Prion protein is necessary for normal synaptic function. Nature 370:295–297

    Article  CAS  PubMed  Google Scholar 

  • Counts SE, Nadeem M, Lad SP, Wuu J, Mufson EJ (2006) Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment. J Neuropathol Exp Neurol 65:592–601

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C, Deacon R, Wells H, Boche D, Waters S, Diniz CP, Scott H, Rawlins JN, Perry VH (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 17:2147–2155

    Article  CAS  PubMed  Google Scholar 

  • Dixon RW, Harris JB (1999) Nerve terminal damage by beta-bungarotoxin: its clinical significance. Am J Pathol 154:447–455

    CAS  PubMed  Google Scholar 

  • Elferink LA, Scheller RH (1993) Synaptic vesicle proteins and regulated exocytosis. J Cell Sci 17:75–79

    CAS  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2000) Deacylation and reacylation of neural membrane glycerophospholipids. J Mol Neurosci 14:123–135

    Article  CAS  PubMed  Google Scholar 

  • Ferrer I (2002) Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease. Cerebellum 1:213–222

    Article  CAS  PubMed  Google Scholar 

  • Fioriti L, Angeretti N, Colombo L, De Luigi A, Colombo A, Manzoni C, Morbin M, Tagliavini F, Salmona M, Chiesa R, Forloni G (2007) Neurotoxic and gliotrophic activity of a synthetic peptide homologous to Gerstmann-Straussler-Scheinker disease amyloid protein. J Biol Chem 27:1576–1583

    CAS  Google Scholar 

  • Gylys KH, Fein JA, Cole GM (2002) Caspase inhibition protects nerve terminals from in vitro degradation. Neurochem Res 27:465–472

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Hossain S, Shimada T, Sugioka K, Yamasaki H, Fujii Y, Ishibashi Y, Oka J, Shido O (2002) Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J Neurochem 81:1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Herms J, Tings T, Gall S, Madlung A, Giese A, Siebert H, Schurmann P, Windl O, Brose N, Kretzschmar H (1999) Evidence of presynaptic location and function of the prion protein. J Neurosci 19:8866–8875

    CAS  PubMed  Google Scholar 

  • Jamieson E, Jeffrey M, Ironside JW, Fraser JR (2001) Activation of Fas and caspase 3 precedes PrP accumulation in 87 V scrapie. Neuroreport 12:3567–3572

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey M, Halliday WG, Bell J, Johnston AR, MacLeod NK, Ingham C, Sayers AR, Brown DA, Fraser JR (2000) Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol 26:41–54

    Article  CAS  PubMed  Google Scholar 

  • Johnston AR, Fraser JR, Jeffrey M, MacLeod N (1998) Synaptic Plasticity in the CA1 Area of the Hippocampus of Scrapie-Infected Mice. Neurobiol Dis 5:188–195

    Article  CAS  PubMed  Google Scholar 

  • Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR, Zamponi GW (2008) Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol 181:551–565

    Article  CAS  PubMed  Google Scholar 

  • Klein WL, Krafft GA, Finch CE (2001) Targeting small A[beta] oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224

    Article  CAS  PubMed  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta 1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Linden R, Prado MAM, Brentani RR, Martins VR (2003) Towards cellular receptors for prions. Rev Med Virol 13:399–408

    Article  CAS  PubMed  Google Scholar 

  • Lipton AM, Cullum CM, Satumtira S, Sontag E, Hynan LS, White CL 3rd, Bigio EH (2001) Contribution of asymmetric synapse loss to lateralizing clinical deficits in frontotemporal dementias. Arch Neurol 58:1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Luchsinger JA, Mayeux R (2004) Dietary factors and Alzheimer’s disease. Lancet Neurol 3:579–587

    Article  PubMed  Google Scholar 

  • Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783

    Article  CAS  PubMed  Google Scholar 

  • Ma DWL, Seo J, Switzer KC, Fan YY, McMurray DN, Lupton JR, Chapkin RS (2004) n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. J Nutri Biochem 15:700–706

    Article  CAS  Google Scholar 

  • Mallucci GR, White MD, Farmer M, Dickinson A, Khatun H, Powell AD, Brandner S, Jefferys JG, Collinge J (2007) Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53:325–335

    Article  CAS  PubMed  Google Scholar 

  • Marcheselli VL, Rossowska MJ, Domingo MT, Braquet P, Bazan NG (1990) Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem 265:9140–9145

    CAS  PubMed  Google Scholar 

  • Mauch DH, Nagler K, Schumacher S, Goritz C, Muller E-C, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Chawla A, Loayza MS, Bazan NG (2007) Docosanoids are multifunctional regulators of neural cell integrity and fate: significance in aging and disease. Prostaglandins Leukot Essent Fatty Acids 77:233–238

    Article  CAS  PubMed  Google Scholar 

  • Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966

    Article  CAS  PubMed  Google Scholar 

  • Pfrieger FW (2003) Role of cholesterol in synapse formation and function. Biochim Biophys Acta 1610:271–280

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH, Mani G, Park BS, Jacques J, Murdoch G, Whetsell W Jr, Kaye J, Manczak M (2005) Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction. J Alzheimers Dis 7:103–117

    CAS  PubMed  Google Scholar 

  • Rigoni M, Caccin P, Gschmeissner S, Koster G, Postle AD, Rossetto O, Schiavo G, Montecucco C, Montecucco C, Rossetto O (2005) Equivalent effects of snake PLA2 neurotoxins and lysophospholipid-fatty acid mixtures. How do presynaptic PLA2 neurotoxins block nerve terminals? Science 310:1678–1680

    Article  CAS  PubMed  Google Scholar 

  • Salmona M, Morbin M, Massignan T, Colombo L, Mazzoleni G, Capobianco R, Diomede L, Thaler F, Mollica L, Musco G, Kourie JJ, Bugiani O, Sharma D, Inouye H, Kirschner DA, Forloni G, Tagliavini F (2003) Structural properties of Gerstmann-Straussler-Scheinker disease amyloid protein. J Biol Chem 278:48146–48153

    Article  CAS  PubMed  Google Scholar 

  • Schwab JM, Chiang N, Arita M, Serhan CN (2007) Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447:869–874

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  • Serhan N (2005) Novel [omega] - 3-derived local mediators in anti-inflammation and resolution. Pharmacol Ther 105:7–21

    Article  CAS  PubMed  Google Scholar 

  • Serulle Y, Morfini G, Pigino G, Moreira JE, Sugimori M, Brady ST, Llinas RR (2007) 1-Methyl-4-phenylpyridinium induces synaptic dysfunction through a pathway involving caspase and PKCdelta enzymatic activities. Proc Natl Acad Sci USA 104:2437–2441

    Article  CAS  PubMed  Google Scholar 

  • Shaikh SR, Cherezov V, Caffrey M, Stillwell W, Wassall SR (2003) Interaction of cholesterol with a docosahexaenoic acid-containing phosphatidylethanolamine: trigger for microdomain/raft formation? Biochemistry 42:12028–12037

    Article  CAS  PubMed  Google Scholar 

  • Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ (2003) The formation of highly soluble oligomers of [alpha]-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37:583–595

    Article  CAS  PubMed  Google Scholar 

  • Shikano M, Masuzawa Y, Yazawa K (1993) Effect of docosahexaenoic acid on the generation of platelet-activating factor by eosinophilic leukemia cells, Eol-1. J Immunol 150:3525–3533

    CAS  PubMed  Google Scholar 

  • Siddiqui RA, Shaikh SR, Sech LA, Yount HR, Stillwell W, Zaloga GP (2004) Omega 3-fatty acids: health benefits and cellular mechanisms of action. MiniRev Med Chem 4:859–871

    CAS  Google Scholar 

  • Siso S, Puig B, Varea R, Vidal E, Acin C, Prinz M, Montrasio F, Badiola J, Aguzzi A, Pumarola M, Ferrer I (2002) Abnormal synaptic protein expression and cell death in murine scrapie. Acta Neuropathol 103:615–626

    Article  CAS  PubMed  Google Scholar 

  • Solfrizzi V, Colacicco AM, D’Introno A, Capurso C, Torres F, Rizzo C, Capurso A, Panza F (2006) Dietary intake of unsaturated fatty acids and age-related cognitive decline: A 8.5-year follow-up of the Italian Longitudinal Study on Aging. Neurobiol Aging 27:1694–1704

    Article  CAS  PubMed  Google Scholar 

  • Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126:1–27

    Article  CAS  PubMed  Google Scholar 

  • Stulnig TM, Berger M, Sigmund T, Raederstorff D, Stockinger H, Waldhausl W (1998) Polyunsaturated fatty acids inhibit T cell signal transduction by modification of detergent-insoluble membrane domains. J Cell Biol 143:637–644

    Article  CAS  PubMed  Google Scholar 

  • Thais ME, Carqueja CL, Santos TG, Silva RV, Stroeh E, Machado RS, Wahlheim DO, Bianchin MM, Sakamoto AC, Brentani RR, Martins VR, Walz R, Tasca CI (2006) Synaptosomal glutamate release and uptake in mice lacking the cellular prion protein. Brain Res 1075:13–19

    Article  CAS  PubMed  Google Scholar 

  • Thiele C, Hannah MJ, Fahrenholz F, Huttner WB (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2:42–49

    Article  CAS  PubMed  Google Scholar 

  • Wadsworth JDF, Joiner S, Linehan JM, Cooper S, Powell C, Mallinson G, Buckell J, Gowland I, Asante EA, Budka H, Brandner S, Collinge J (2006) Phenotypic heterogeneity in inherited prion disease (P102L) is associated with differential propagation of protease-resistant wild-type and mutant prion protein. Brain 129:1557–1569

    Article  PubMed  Google Scholar 

  • Watanabe S, Doshi M, Akimoto K, Kiso Y, Hamazaki T (2001) Suppression of platelet-activating factor generation and modulation of arachidonate metabolism by dietary enrichment with (n-9) eicosatrienoic acid or docosahexaenoic acid in mouse peritoneal cells. Prostaglandins Other Lipid Mediat 66:109–120

    Article  CAS  PubMed  Google Scholar 

  • Weimer RM, Jorgensen EM (2003) Controversies in synaptic vesicle exocytosis. J Cell Sci 116:3661–3666

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission FP6 “Neuroprion”—Network of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive Bate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bate, C., Tayebi, M., Salmona, M. et al. Polyunsaturated Fatty Acids Protect Against Prion-Mediated Synapse Damage In Vitro. Neurotox Res 17, 203–214 (2010). https://doi.org/10.1007/s12640-009-9093-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9093-2

Keywords

Navigation