Skip to main content

Advertisement

Log in

Apicomplexan lineage-specific polytopic membrane proteins in Cryptosporidium parvum

  • Short Communication
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Apicomplexans are a group of parasitic protozoans, including Plasmodium and Cryptosporidium species, which harbor a specialized organelle called an apicoplast. Of the 145-apicomplexan lineage-specific proteins identified in Cryptosporidium parvum, 30 are surface proteins. In Plasmodium falciparum, a heteromeric complex of three related apicomplexan lineage-specific membrane proteins containing 6 transmembrane domains (m6t) have been identified. These proteins are Pfm6t α, Pfm6t β, and Pfm6t γ and these proteins are localized on merozoite as an inner membrane complex (Rayavara et al. in Mol Biochem Parasitol 167(2):135–143, 2009). In C. parvum, homologs of these proteins are identified and are Cpm6t α, Cpm6t β, and Cpm6t γ. Mass spectrometric analysis of C. parvum (Iowa II) protein extracts of oocyst, sporozoite and soluble and insoluble fractions of cytoplasm identified the presence of Cpm6t α, Cpm6t β, and Cpm6t γ specific peptides in these fractions. The expression of Cpm6t α, Cpm6t β, and Cpm6t γ proteins on various developmental stages of C. parvum suggests that this novel group of apicomplexan lineage-specific proteins in Cryptosporidium may be involved in multiple cellular processes apart from the invasion into host epithelial cells as suggested for P. falciparum merozoites onto host erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Akiyoshi DE, Feng X, Buckholt MA, Widmer D, Tzipori S (2002) Genetic analysis of Cryptosporidium parvum: human genotype 1 isolate passaged through different host species. Infect Immun 70:5670–5675

    Article  CAS  Google Scholar 

  • Aldeyarbi HM, Karanis P (2016) Electron microscopic observation of the early stages of asexual multiplication and development of Cryptosporidium parvum in in vitro axenic culture. Eur J Protistol 52:36–44

    Article  Google Scholar 

  • Bushen OY, Kohli A, Pinkerton RC, Dupnik K, Newman RD, Sears CL, Fayer R, Lima AA, Guerrant RL (2006) Heavy cryptosporidial infections in children in northeast Brazil: comparison of Cryptosporidium hominis and Cryptosporidium parvum. Trans R Soc Trop Med Hyg 101:378–384

    Article  Google Scholar 

  • Chen X-M, Ohara SP, Huang BQ, Splinter PL, Nelson JB, LaRusso NF (2005) Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion. PNAS 102:6338–6343

    Article  CAS  Google Scholar 

  • Costa LB, JohnBull EA, Reeves JT, Sevilleja JE, Freire RS, Hoffman PS, Lima AA, Oria RB, Roche JK, Guerrant RL, Warren CA (2011) Cryptosporidium malnutrition interactions: mucosal disruption, cytokines, and TLR signaling in a weaned murine model. J Parasitol 97:1113–1120

    Article  CAS  Google Scholar 

  • Dumenil G (2011) Revisiting the extracellular lifestyle. Cell Microbiol 13(8):1114–1121

    Article  CAS  Google Scholar 

  • Guerrant RL (1997) Cryptosporidiosis: an emerging, highly infectious threat. Emerg Infect Dis 3:51–57

    Article  CAS  Google Scholar 

  • Guerrant DI, Moore SR, Lima AA, Patrick PD, Schorling JB, Guerrant RL (1999) Association of early childhood diarrhea and cryptosporidiosis with impaired physical fitness and cognitive function foureseven years later in a poor urban community in northeast Brazil. Am J Trop Med Hyg 61:707–713

    Article  CAS  Google Scholar 

  • Holubov N, Sak B, Horcickov M, Hlásková L, Kvetonov D, Menchaca S, McEvoy J, Kvac M (2016) Cryptosporidium avium n. sp. (Apicomplexa: Cryptosporidiidae) in birds. Parasitol Res 115(6):2243–2251

    Article  Google Scholar 

  • Jakubowski W (1995) Giardia and Cryptosporidium: the details. 1995 Safe Drinking Water Act Seminar. U.S. Environmental Protection Agency

  • Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acacio S, Biswas K, O’Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMS): a prospective, case-control study. Lancet 382:209–222

    Article  Google Scholar 

  • Kuriyama R, Besse C, Geze M, Omoto CK, Schrével J (2005) Dynamic organization of microtubules and microtubule-organizing centers during the sexual Phase of a parasitic protozoan, Lecudina tuzetae (Gregarina, Apicomplexa). Cell Motil Cytoskeleton 62:195–209

    Article  Google Scholar 

  • Kvac M, Havrdová N, Hlásková L, Daňková T, Kanděra J, Ježková J, Vítovec J, Sak B, Ortega Y, Xiao L, Modrý D, Chelladurai JR, Prantlová V, McEvoy J (2016) Cryptosporidium proliferans n. sp. (apicomplexa: Cryptosporidiidae): molecular and biological evidence of cryptic species within Gastric Cryptosporidium of mammals. PLoS ONE 11(1):0147090

    Article  Google Scholar 

  • Li X, Pereira M, Larsen R, Xiao C, Phillips R, Striby K, McCowan B, Atwill ER (2015) Cryptosporidium rubeyi n. sp. (Apicomplexa: Cryptosporidiidae) in multiple Spermophilus ground squirrel species. Int J Parasitol Parasites Wildl 4(3):343–350

    Article  Google Scholar 

  • Madrid-Aliste CJ, Dybas JM, Angeletti RH, Weiss LM, Kim K, Simon I, Fiser A (2009) EPIC-DB: a proteomics database for studying Apicomplexan organisms. BMC Genom 10:38. https://doi.org/10.1186/1471-2164-10-38

    Article  CAS  Google Scholar 

  • Medema G, Teunis P, Blokker M, Deere D, Davison A, Charles P, Loret JF (2006) WHO Guidelines for drinking water quality: Cryptosporidium. WHO, New York, p 138

    Google Scholar 

  • Morgan-Ryan UM et al (2002) Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens. J Eukaryot Microbiol 49:433–440

    Article  Google Scholar 

  • Rayavara K, Rajapandi T, Wollenberg K, Kabat J, Fischer ER, Desai SA (2009) A complex of three related membrane proteins is conserved on malarial merozoites. Mol Biochem Parasitol 167(2):135–143

    Article  CAS  Google Scholar 

  • Ryan U, Paparini A, Tong K, Yang R, Gibson-Keuh S, O’Hara A, Lymbery A, Xiao L (2015) Cryptosporidium huwi n. sp. (Apicomplexa: Eimeriidae) from the guppy (Poecilia reticulata). Exp Parasitol 150:31–35

    Article  CAS  Google Scholar 

  • Sanderson SJ, Xia D, Prieto H, Yates J, Heiges M, Kissinger JC, Bromley E, Lal K, Sinden RE, Tomley F, Wastling JM (2008) Determining the protein repertoire of Cryptosporidium parvum sporozoites. Proteomics 8(7):1398–1414. https://doi.org/10.1002/pmic.200700804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snelling WJ, Xiao L, Ortega-Pierres G, Lowery CJ, Moore JE, Rao JR, Smyth S, Millar BC, Rooney PJ, Matsuda M, Kenny F, Xu J, Dooley JS (2007a) Cryptosporidiosis in developing countries. J Infect Dev 1:242–256

    Article  Google Scholar 

  • Snelling WJ, Lin Q, Moore JE, Millar BC (2007b) Proteomics analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (Coccidia, Apicomplexa). Mol Cell Proteom 6:346–355

    Article  CAS  Google Scholar 

  • Striepen B (2013) Parasitic infections: time to tackle cryptosporidiosis. Nature 503:189–191

    Article  Google Scholar 

  • Striepen B, Kissinger JC (2004) Genomics meets transgenics in search of the elusive Cryptosporidium drug target. Trends Parasitol 20(8):355–358

    Article  CAS  Google Scholar 

  • Truong Q, Ferrari BC (2006) Quantitative and qualitative comparisons of Cryptosporidium faecal purification procedures for the isolation of oocysts suitable for proteomic analysis. Int J Parasitol 36:811–819

    Article  CAS  Google Scholar 

  • Tzipori S, Ward H (2002) Cryptosporidiosis: biology, pathogenesis and disease. Microb Infect 4:1047–1058

    Article  Google Scholar 

  • Wanyiri JW, O’Connor R, Allison G, Kim K, Kane A, Qiu J, Plaut AG, Ward HD (2007) Proteolytic processing of the Cryptosporidium spp. glycoprotein gp40/15 by human furin and by a parasite-derived furin-like protease activity. Infect Immun 75:184–192

    Article  CAS  Google Scholar 

  • Wanyiri J, Ward H (2006) Molecular basis of Cryptosporidium–host cell interactions: recent advances and future prospects. Future Microbiol 1:201–208

    Article  CAS  Google Scholar 

  • Ward HD, Cevallos AM (1998) Cryptosporidium: molecular basis of host–parasite interaction. Adv Parasitol 40:151–185

    Article  CAS  Google Scholar 

  • Xiao L, Ryan UM (2004) Cryptosporidiosis: an update in molecular epidemiology. Curr Opin Infect Dis 17:483–490

    Article  Google Scholar 

  • Zahedi A, Paparini A, Jian F, Robertson I, Ryan U (2016) Public health significance of zoonotic Cryptosporidium species in wildlife: critical insights into better drinking water management. Int J Parasitol 5:88–109

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Paul Gass, Coppin State University for critical reading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

TR conceived and devised the study, collected data and analyzed results, made interpretations, collected references, wrote the manuscript.

Corresponding author

Correspondence to Thavamani Rajapandi.

Ethics declarations

Conflict of interest

The author reports no conflict of interest.

Ethical approval

Not required.

Consent for participation

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajapandi, T. Apicomplexan lineage-specific polytopic membrane proteins in Cryptosporidium parvum. J Parasit Dis 44, 467–471 (2020). https://doi.org/10.1007/s12639-020-01209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-020-01209-5

Keywords

Navigation