Skip to main content
Log in

Effect of entomopathogenic nematode of Heterorhabditis indica infection on immune and antioxidant system in lepidopteran pest Spodoptera litura (Lepidoptera: Noctuidae)

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Entomopathogenic nematodes form excellent tools to study insect immunity in response to during infection. Insects activate as several defense mechanisms, namely Phenoloxidase, haemocytes, detoxification and antioxidant enzymes. However little mechanistic information is available about the sublethal effects of entomopathogenic nematodes infection on detoxification and immune mechanisms in lepidopteran insects. In the present study, the effects of infection on antioxidant, detoxification and immune systems of Spodoptera litura larvae were studied. Results show a significant reduction in Total Haemocyte Count observed after 3 h of infection. A significant increase Superoxide dismutase, Catalase, Glutathione S-transferase, Glutathione Peroxidase and Acid phosphatase were observed 6 h after infection and, progressive decrease in Peroxidase, Alkaline phosphatase and Lipid peroxidation was also observed. This study shows that increased detoxification enzyme levels in response to nematode infection are a protective mechanism in insects. Nematode infection suppresses insect immune response, which is evident from low haemocyte count and Phenoloxidase levels to ultimately cause larval mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arthur JR (2000) The glutathione peroxidase. Cell Mol Life Sci 57(13):1825–1835

    Article  PubMed  CAS  Google Scholar 

  • Asakura T, Adachi K, Schwartz E (1978) Stabilizing effect of various organic solvents on protein. J Biol Chem 253:6423–6425

    PubMed  CAS  Google Scholar 

  • Ashida M (1971) Purification and characterization of pre-phenoloxidase from haemolymph of the silkworm Bombyx mori. Arch Biochem Biophys 144:749–762

    Article  PubMed  CAS  Google Scholar 

  • Brivio MF, Pagani M, Restelli S (2002) Immune suppression of Galleria mellonella (Insecta, Lepidoptera) humoral defenses induced by Steinernema feltiae (Nematoda, Rhabditida): involvement of the parasite cuticle. Exp Parasitol 101:149–156

    Article  PubMed  CAS  Google Scholar 

  • Brown SE, Cao AT, Hines ER, Akhurst RJ, East PD (2004) Novel secreted protein toxin from the insect pathogenic bacterium Xenorhabdus nematophila. J Biol Chem 279:14595–14601

    Article  PubMed  CAS  Google Scholar 

  • Brown SE, Cao AT, Dobson P, Hines ER, Akhurst RJ, East PD (2006) Txp40 a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Appl Environ Microbiol 72:1653–1662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burnell AM, Stock P (2000) Heterorhabditis, Steinernema and their bacterial symbionts: lethal pathogens of insects. Nematol 2:31–42

    Article  Google Scholar 

  • Castillo JC, Reynolds SE, Eleftherianos I (2011) Insect immune responses to nematode parasites. Trends Parasitol 27:537–547

    Article  PubMed  CAS  Google Scholar 

  • Cerenius L, Lee BL, Soderhall K (2008) ProPOsystem: pros and cons for its role in invertebrate Immunity. Trends Immunol 29:263–271

    Article  PubMed  CAS  Google Scholar 

  • Chapman RF (1998) Insects structure and function. Cambridge University Press, Cambridge, pp 94–127

    Book  Google Scholar 

  • Cheng TC (1983) Role of lysosomes in mollusc inflammation. Am Zool 23:129–144

    Article  CAS  Google Scholar 

  • Dubovskiy IM, Martemyanow VV, Vorontsova YL, Rantala MJ, Gryzanova EV, Glupov VV (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp Biochem Physiol C 148:1–5

    CAS  Google Scholar 

  • Felton GW, Summers CB (1995) Antioxidant systems in insects. Arch Insect Biochem Physiol 29:187–197

    Article  PubMed  CAS  Google Scholar 

  • Ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:436–451

    Article  PubMed  CAS  Google Scholar 

  • Freitak D, Wheat CW, Heckel DG, Vogel H (2007) Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biol 5:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grewal P, Ehlers RU, Shapiro-Ilan DI (2005) Nematodes as biological control agents. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Hemingway J (2000) The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol 30:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JA (1996) Innate immunity higher insects. Curr Opin Immunol 7:410

    Google Scholar 

  • Jung SC, Kim YG (2007) Potentiating effect of Bacillus thuringensis sub sp. Kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila against diamond backmoth. J Econ Entomol 100(1):246–250

    Article  PubMed  Google Scholar 

  • Kaya HK (1988) Steinernematidae and heterorhabditidae nematodes. A handbook of techniques. Arkansas Agriculture Experimental Station, Fayetteville, p 30

    Google Scholar 

  • Kolawole AO, Kolawole AN (2014) Insecticides and bio-insecticides modulate the glutathione-related antioxidant defense system of cowpea storage Bruchid (Callosobruchus maculatus). Int J Insect Sci 6:79–88

    CAS  Google Scholar 

  • Koppenhofer AM, Grewal PS, Fuzy EM (2007) Virulence of the entomopathogenic nematodes Heterorhabditis bacteriophora, Heterorhabditis zealandica, and Steinernema scarabaei against five white grub species (Coleoptera: Scarabaeidae) of economic importance in turfgrass in North America. Biol Control 38:397–404

    Article  Google Scholar 

  • Krystyna Z, Grochla P, Biernat EL (2006) Activity of superoxide dismutase in Galleria mellonella larvae infected with entomopathogenic nematodes Steinernema affinis and S. feltiae. Wisdom Parazytol 52(4):283–286

    Google Scholar 

  • Kunc M, Badrul A, Pavel H, Ulrich T (2017) Monitoring the effect of pathogenic nematodes on locomotion of Drosophila larvae. Fly 3:1–10

    Google Scholar 

  • Li Q, Sun Y, Wang G, Liu X (2009) Affects of the mermithid nematode Ovomermis sinensis on the hemocytes of its host Helicoverpa armigera. J Insect Physiol 55:47–50

    Article  PubMed  CAS  Google Scholar 

  • Liu JQ, Zhang K, Ren XJ, Luo GM, Shen JC (2004) Bio imprinted protein exhibits glutathione peroxidase activity. Anal Chim Acta 504(1):185–189

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of superoxide anion radical in the autoxidation of pyrogallol convenient assay for superoxide dismutase. Eur J Biochem 47:469–471

    Article  PubMed  CAS  Google Scholar 

  • Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicol 153(1):83–104

    Article  CAS  Google Scholar 

  • Mills N (2014) Plant health management. In: Van Alfen NK (ed) Biological control of insect pests. Encyclopedia of agriculture and food systems. Academic Press, Oxford, pp 375–387

    Chapter  Google Scholar 

  • Nordberg J, Arner ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31(11):1287–1312

    Article  PubMed  CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Annu Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Orr D, Lahiri S (2014) Biological control of insect pests in crops. In: Abrol DP (ed) Integrated pest management. Academic Press, San Diego, pp 531–548

    Chapter  Google Scholar 

  • Pavlick KP, Laroux FS, Fuseler J, Wolf RE, Gray L, Hoffman J, Grisham MB (2002) Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic Biol Med 33:311–322

    Article  PubMed  CAS  Google Scholar 

  • Pham LN, Schneider DS (2008) Evidence for specificity and memory in the insect innate immune response. In: Beckage NE (ed) Insect immunology. Academic Press, San Diego, pp 97–128

    Chapter  Google Scholar 

  • Poinar GO Jr (1990) Taxonomy and biology of Steinernematidae and Heterorhabditidae. In: Gauglar R, Kaya HK (eds) Entomopathogenic nemtaodes in biological. CRC Press, Boca Raton, pp 23–61

    Google Scholar 

  • Reddy KP, Subhani SM, Khan PA, Kumar KB (1995) Effect of light and benzyl adenine on dark treated growing rice (Oryza sativa) leaves-changes in peroxidase activity. Plant Cell Physiol 26:987–994

    Article  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HL (1984) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588

    Article  PubMed  CAS  Google Scholar 

  • Saleem MA, Shakoori AR (1996) Biochemical studies Tal cord 10EC. II. Effect on some enzyme activities macromolecules of adult beetles of Tribolium castaneum. Pak J Zool 28:151–162

    CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seed JL, Boff M, Bennett JL (1978) Phenoloxidase activity: induction in female schistosomes by in vitro incubation. J Parasitol 64:283–289

    Article  PubMed  CAS  Google Scholar 

  • Shamseldean MM, Sharaby AF, Gesraha MA, Montasser SA, Ibrahim SA (2013) Utilization of entomopathogenic nematodes combined with plant extracts and plant essential oils against grass hoppers Heteracrir littoralis. J Basic Appl Sci Res 3:289–294

    Google Scholar 

  • Toubarroa D, Lucena Roblesa M, Nascimentoa G, Costab G, Montiela R, Coelhob AV, Simoesan N (2009) An apoptosis inducing serine protease secreted by the entomopathogenic nematode Steinernema carpocapsae. Int J Parasitol 39:1319–1330

    Article  CAS  Google Scholar 

  • Ullah I, Khan AL, Ali L, Khan AR, Waqaset M, Lee I, Shin J (2014) An insecticidal compound produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase. Molecules 19:20913–20928

    Article  PubMed  CAS  Google Scholar 

  • Vashisth S, Chandel YS, Sharma PK (2013) Entomopathogenic nematodes—a review. Agric Rev 34:163–175

    Article  Google Scholar 

  • Wang W, Zhang X (2008) Comparison of antiviral efficiency of immune responses in shrimp. Fish Shellfish Immunol 25:522–527

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Oberley LW, Murhammer DW (2001) Evidence of oxidative stress following the viral infection of two Lepidopteran insect cell lines. Free Radic Biol Med 31:1448–1455

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1959) Insect blood cells. Annu Rev Entomol 4:1–16

    Article  Google Scholar 

  • Wu H, Liu Q, Li X, Wang Y, Zhang H (2013) Activities of four enzymes in Galleria mellonella larvae infected with entomopathogenic nematode Heterorhabditis beicherrianan sp. Afr J Agric Res 8:3245–3250

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India for providing infrastructure facilities for carrying out this research work.

Author information

Authors and Affiliations

Authors

Contributions

Experiment design: MSS, PP. Performing the experiments: KL RK and GV. Data analyzed: KL GV. Writing of manuscript: KL, MSS.

Corresponding author

Correspondence to M. S. Shivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalitha, K., Karthi, S., Vengateswari, G. et al. Effect of entomopathogenic nematode of Heterorhabditis indica infection on immune and antioxidant system in lepidopteran pest Spodoptera litura (Lepidoptera: Noctuidae). J Parasit Dis 42, 204–211 (2018). https://doi.org/10.1007/s12639-018-0983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-018-0983-1

Keywords

Navigation