Skip to main content
Log in

A Detailed Roadmap from Single Gate to Heterojunction TFET for Next Generation Devices

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Through the age of nanoelectronics, device dimensions are curbed, and the size of transistors is rapidly reduced. Scaling down transistors results in high-speed switching, higher density, reduced power consumption, lower transistor costs. Some of the critical issues facing scaling down transistor sizes such as punch-through effect, drain-induced barrier lowering (DIBL), gate leakage current, threshold voltage roll-off, leakage current effects various proposed structure. The evolution of the semiconductor industry from the appropriate methods CMOS into a proposed structure called TFET. The TFET is a suitable method as a critical part of the power usage in circuit boards that achieves its target to meet reverse sub-threshold slope (SS) below the temperature limit (60 mV/dec in room temperature) with often a lower drive current implicitly than a MOSFET. In this study, an effort has been made to bring the roadmap of various TFET structures like Single gated TFET, Double gated TFET, Tri gated TFET, and, finally, Heterojunction TFET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Navya Shree G, Priyadarshini U, Keerthana M, Vimala P (2020) Design of gate engineered heterojunction surrounding gate tunnel field effect transistor (HSG TFET). International Conference on Emerging Trends in Information Technology and Engineering https://doi.org/10.1109/icETITE47903.2020.230

  2. Sahoo S, Dash S, Mishra GP (2018) An extensive simulation study of Gaussian drain doped Heterojunction Double Gate TFET. IEEE Electron Device KolkataConference.https://doi.org/10.1109/EDKCON.2018.8770387

  3. Madan J, SkandaShekhar RC (2017) Gate metal engineered Heterojunction DGTFETs for superior analog performance and enhanced device reliability. Conference on Information and Communication Technology. https://doi.org/10.1109/INFOCOMTECH.2017.8340634

  4. Madan J, Karwal K, Chaujar R (2018) Performance analysis of Heterojunction DMDGTFET with different source materials for analog application. Proceedings of the 2nd International Conference on Trends in Electronics and Informatics. https://doi.org/10.1109/ICOEI.2018.8553716

  5. Pindoo IA, Sinha SK, Tripathi SL (2019) Performance analysis of double gate Heterojunction tunnel field effect transistor. International Conference on Cutting-edge Technologies in Engineering. https://doi.org/10.1109/ICon-CuTE47290.2019.8991467

  6. Das D, Chakraborty U (2020) A study on dual dielectric pocket Heterojunction SOI tunnel FET performance and flicker noise analysis in presence of Interface traps. Silicon. 13:787–798. https://doi.org/10.1007/s12633-020-00488-0

    Article  CAS  Google Scholar 

  7. Ritam D, Subash TD, Paitya N (2020) InAs/Si hetero-junction channel to enhance the performance of DG-TFET with GrapheneNanoribbon: an analytical model. Silicon. 13:1453–1459. https://doi.org/10.1007/s12633-020-00546-7

    Article  CAS  Google Scholar 

  8. Ahish S, Sharma D, Kumar YBN, Vasantha MH (2016) Performance enhancement of novel InAs/Si hetero double-gate tunnel FET using Gaussian doping. IEEE Transactions On Electron Devices 63:288–295. https://doi.org/10.1109/TED.2015.2503141

    Article  CAS  Google Scholar 

  9. RanjanTripathy M, Singh AK, Chander S, Singh PK, Baral K, Jit S (2020) Device-level performance comparison of some pocket engineered III-V/Si hetero-junction vertical tunnel field EffectTransistor. International Conference on Devices, Circuits and Systems. https://doi.org/10.1109/ICDCS48716.2020.243576

  10. Haris M, Loan SA, Mainuddin (2017) An Ambipolar Immune Si/GaAs Hetero-junction Doping-less TFET. International conference on Microelectronic Devices, Circuits and Systems. https://doi.org/10.1109/ICMDCS.2017.8211539

  11. Biswal SM, Swain SK, BiswajitBaral DN, Nanda U, DhananjaTripthy SKD (2019) Performance analysis of staggered Heterojunction based SRG TFET biosensor for health IoT application. Devices for Integrated Circuit (DevIC). https://doi.org/10.1109/DEVIC.2019.8783813

  12. Dewey G, Chu-Kung B, Boardman J, Fastenau JM, Kavalieros J, Kotlyar R, Liu WK, Lubyshev D, Metz M, Mukherjee N, Oakey P, Pillarisetty R, Radosavljevic M, Then HW, Chau R (2011) Fabrication, characterization, and physics of III-V Heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. International Electron Devices Meeting. https://doi.org/10.1109/IEDM.2011.6131666

  13. Chien ND, Shih C-H (2016) Oxide thickness-dependent effects of source doping profile on the performance of single- and double-gate tunnel field-effect transistors. Superlattice Microst 102:284–299. https://doi.org/10.1016/j.spmi.2016.12.048

    Article  CAS  Google Scholar 

  14. Lee MJ, Choi WY (2011) Analytical model of single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs). Solid State Electron 63:110–114. https://doi.org/10.1016/j.sse.2011.05.008

    Article  CAS  Google Scholar 

  15. Wang PF, Hilsenbeck K, Nirschl TH, Oswald M, Stepper CH, Weiss M, Landsiedel DS, Hansch W (2004) Complementary tunneling transistor for low power applications. Solid State Electron 48(12):2281–2286

    Article  CAS  Google Scholar 

  16. Lee MJ, Choi WY (2011) Analytical model of a single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs). Solid State Electron 63(1):110–114

    Article  CAS  Google Scholar 

  17. Mallikarjunarao RR, Pradhan KP, Sahu PK (2016) Dielectric engineered symmetric underlap double gate tunnel FET (DGTFET): an investigation towards variation of dielectric materials. Superlattice Microst 96:226–233. https://doi.org/10.1016/j.spmi.2016.05.035

    Article  CAS  Google Scholar 

  18. Wang Y, Wang Y-f, Xue W, Cao F (2016) Asymmetric dual-gate tunneling FET with improved performance. Superlattice Microst 91:216–224. https://doi.org/10.1016/j.spmi.2016.01.017

    Article  CAS  Google Scholar 

  19. Kumar S, EktaGoel KS, Singh B, Singh PK, Baral K, Jit S (2017) 2-D analytical modeling of the electrical characteristics of dual-material double- gate TFETs with a SiO2/HfO2 stacked gate-oxide structure. IEEE Transactions On Electron Devices 64:960–968. https://doi.org/10.1109/TED.2017.2656630

    Article  CAS  Google Scholar 

  20. Liu X, Hu H, Wang M, Zhang H, Cui S, Shu B, Wang B (2017) Study of novel fully-depleted Ge double-gate tunneling field-effect transistors for improvement in on-state current and sub-threshold swing. Physica E: Low-dimensional Systems and Nanostructures 95:51–58. https://doi.org/10.1016/j.physe.2017.08.014

    Article  CAS  Google Scholar 

  21. Madan J, Kaur R, Sharma R, Pandey R, RishuChaujar (2018) Electrical characteristics assessment of gate metal and source pocket engineered DG-TFET for low power analog applications. IEEE Electron Device Kolkata Conference. https://doi.org/10.1109/EDKCON.2018.8770462

  22. Meshkin R, SedighZiabari SA, RezaeeJordehi A (2018) A novel analytical approach to optimize the work functions of dual-material double-gate tunneling-FETs. Superlattice Microst 126:63–71. https://doi.org/10.1016/j.spmi.2018.12.016

    Article  CAS  Google Scholar 

  23. Priya GL, Venkatesh M, Balamurugan NB (2021) Triple metal surrounding gate junctionless tunnel FET based 6T SRAM design for low leakage memory system. Silicon. https://doi.org/10.1007/s12633-021-01075-7

  24. Venkatesh M, Balamurugan NB (2020) Influence of threshold voltage performance analysis on dual halo gate stacked triple material dual gate TFET for ultra low power applications. Silicon http://link.springer.com/article/10.1007/s12633-020-00422-4 13:275–287

    Article  Google Scholar 

  25. Venkatesh M, Suguna M, Balamurugan NB (2020) Influence of germanium source dual halo dual dielectric triple material surrounding gate tunnel FET for improved analog/RF performance. Silicon. http://link.springer.com/article/10.1007/s12633-020-00385-6 12:2869–2877

    Article  CAS  Google Scholar 

  26. Dewan MI, Kashem MTB, Subrina S (2016) Characteristic analysis of triple material tri-gate Junctionless tunnel field effect transistor. International Conference on Electrical and Computer Engineering. https://doi.org/10.1109/ICECE.2016.7853924

  27. Dash DK, PriyankaSaha AM, Sarkar SK (2017) 3-D analytical modeling of dual-metal front-gate stack tri-gate SON-TFET with Graded Channel engineering. IEEE Calcutta Conference. https://doi.org/10.1109/CALCON.2017.8280724

  28. Saha P, Sarkhel S (2018) 3D modeling based performance analysis of gate engineered trigate SON TFET with SiO2/HfO2 stacked gate oxide. IEEE International Conference on Electronics, Computing and Communication Technologies. https://doi.org/10.1109/CONECCT.2018.8482379

  29. Vanlalawmpuia K, Bhowmick B (2020) Optimization of a Hetero-structure vertical tunnel FET for enhanced electrical performance and effects of temperature variation on RF/linearityparameters. Silicon. https://doi.org/10.1007/s12633-020-00411-7

  30. Li W, Liu H, Wang S, Chen S, Yang Z (2017) Design of High Performance Si/SiGe Heterojunction tunneling FETs with a T-shaped gate. Nanoscale Res Lett. https://doi.org/10.1186/s11671-017-19583

  31. ShiromaniBalmukundRahi PA, Gupta S (2017) Heterogatejunctionless tunnel field-effect transistor: future of low-power devices. J Comput Electron 16:30–38. https://doi.org/10.1007/s10825-016-0936-9

    Article  CAS  Google Scholar 

  32. Oliva N, Capua L, Cavalieri M, Luisier M, Ionescu AM (2020) WSe2/SnSe2 vdW heterojunction Tunnel FET with subthermionic characteristic and MOSFET co-integrated on same WSe2 flake. npj 2D Materials and Applications. https://doi.org/10.1038/s41699-020-0142-2

  33. Schulte-Braucks C, Pandey R, Sajjad RN, Barth M, Ghosh RK, Grisafe B, Sharma P, von den Driesch N, Vohra A, Rayner Jr GB, Loo R, Mantl S, Buca D, Chih-ChiehYeh C-HW, Tsai W, Antoniadis DA, Datta S (2017) Fabrication, characterization, and analysis of Ge/GeSn Heterojunction p-type tunnel transistors. IEEE Transactions on Electron Devices 64:4354–4362. https://doi.org/10.1109/TED.2017.2742957

    Article  CAS  Google Scholar 

  34. Sangeetha G S, T. E Ayoob Khan, Dr.Shahul Hameed T A (2016) SiGe/Si Heterojunction TFET for analog signal applications. International Conference on Next Generation IntelligentSystems.https://doi.org/10.1109/ICNGIS.2016.7854035

  35. HwaSeo J, Yoon YJ, Kwon RH, In Jang Y, Kang IM (2016) Design optimization of Si/Ge-based Heterojunction arch-shaped gate-all-around (GAA) tunneling field-effect transistor (TFET) which applicable for future Mobile communication systems. International Conference on Information Networking. https://doi.org/10.1109/ICOIN.2016.7427155

  36. Jae HwaSeo, Young Jun Yoon, Hwan Gi Lee, In Man Kang (2018) Design optimization InGaAs/GaAsSb-based Heterojunction Gate-All-Around (GAA) arch-shaped tunneling field-effect transistor (A-TFET). International Conference on Electronics, Information, and Communication. https://doi.org/10.23919/ELINFOCOM.2018.8330638

  37. Afzalian A, Doornbos G, Shen T-M, Passlack M (2018) A high-performance InAs/GaSb core-shell nanowire line-tunneling TFET: An atomistic mode-space NEGF study. IEEE J Electron Devices Soc. https://doi.org/10.1109/JEDS.2018.2881335

  38. G. Dewey, B. Chu-Kung, J. Boardman, J. M. Fastenau, J. Kavalieros, R. Kotlyar, W. K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. W. and R. Chau (2011) Fabrication, characterization, and physics of III-V Heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. International Electron Devices Meeting https://doi.org/10.1109/IEDM.2011.6131666

  39. Ke S, Hu J, Xu X (2019) Independent-gate P-type TFETs using double Heterojunction structures. IEEE International Symposium on Circuits and Systems. https://doi.org/10.1109/ISCAS.2019.8702154

  40. Han-Lin H, Hu VP-H (2018) Device design of vertical nanowire III-V heterojunction TFETs for performance enhancement. International Symposium on Next Generation Electronics. https://doi.org/10.1109/ISNE.2018.8394742

  41. Lv Y, Huang Q, HaoWang SC, He J (2016) A numerical study on Graphene Nanoribbon Heterojunction dual-material gate tunnel FET. IEEE Electron Device Letters 37:1354–1357. https://doi.org/10.1109/LED.2016.2597155

    Article  Google Scholar 

  42. Shih P-C, Hou W-C, Li J-Y (2017) A U-gate InGaAs/GaAsSb Heterojunction TFET of tunneling normal to the gate with separate control over ON- and OFF-state current. IEEE Electron Device Letters 38:1751–1754. https://doi.org/10.1109/LED.2017.2759303

    Article  CAS  Google Scholar 

  43. Yang S, HongliangLv BL, Yan S, Zhang Y (2020) A novel planar architecture for Heterojunction TFETs with improved performance and its digital application as an inverter. IEEE Access 8:23559–23567. https://doi.org/10.1109/ACCESS.2020.2970502

    Article  Google Scholar 

  44. YaweiLv QH, Wang H, Chang S, Member, He J (2016) A numerical study on GrapheneNanoribbon Heterojunction dual-material gate tunnel FET. IEEE Electron Device Letters 37:1354–1357. https://doi.org/10.1109/LED.2016.2597155

    Article  Google Scholar 

  45. Hraziia AV, Amara A, CostinAnghel (2012) An analysis on the ambipolar current in Si double-gate tunnelFETs. Solid State Electron 70:67–72. https://doi.org/10.1016/j.sse.2011.11.009

    Article  CAS  Google Scholar 

  46. Vanitha P, Arun Samuel TS, Nirmal D (2018) A new 2- D mathematical modeling of surrounding gate triple material tunnel FET using halo engineering for enhanced drain current. Int J Electron Commun 99:34–39. https://doi.org/10.1016/j.aeue.2018.11.013

    Article  Google Scholar 

  47. Tamersit K (2020) Performance enhancement of an ultra-scaled double-gate graphene-nanoribbon tunnel field-effect transistor using channel doping engineering: quantum simulation study. Int J Electron Commun 122:153287. https://doi.org/10.1016/j.aeue.2020.153287

    Article  Google Scholar 

  48. Bagga N, Sarkar SK (2015) An analytical model for tunnel barrier modulation in triple metal double gate TFET. IEEE Transactions on Electron Devices 62:2136–2142. https://doi.org/10.1109/TED.2015.2434276

    Article  CAS  Google Scholar 

  49. Bagga N, Sarkhel S, Sarkar SK (2016) Analytical model for ID-VD characteristics of a triple metal double gate TFET. International Conference on Computing, Communication and Automation. https://doi.org/10.1109/CCAA.2016.7813939

  50. Ko E, Lee H, Park J-D, Shin C (2016) Vertical tunnel FET: design optimization with triple metal-gate layers. IEEE Transactions On Electron Devices 63:5030–5035. https://doi.org/10.1109/TED.2016.2619372

    Article  CAS  Google Scholar 

  51. Komalavalli S, Arun Samuel TS, Vimala P (2019) Performance analysis of triple material tri gate TFET using 3D analytical modelling and TCAD simulation. Int J Electron Commun 110:152842. https://doi.org/10.1016/j.aeue.2019.152842

    Article  Google Scholar 

  52. Rao M, Ranjan R, Pradhan KP, Sahu PK (2016) Performance analysis of symmetric High-k Spacer (SHS) trigate SOI TFET. International Conference on Devices, Circuits and Systems. https://doi.org/10.1109/ICDCSyst.2016.7570642

  53. Safa S, Noor SL, Khan MZR (2016) Triple material double gate TFET with optimized Si film thickness. International Conference on Electrical Engineering and Information Communication Technology. https://doi.org/10.1109/CEEICT.2016.7873039

  54. Torres HLF, Martino JA, Rooyackers R, Vandooren A, Simoen E, Claeys C, Agopian PGD (2017) Proton radiation effects on the self-aligned triple gate SOI p-type Tunnel FET output characteristic. Symposium on Microelectronics Technology and Devices. https://doi.org/10.1109/SBMicro.2017.8112973

  55. Dewey G, Chu-Kung B, Boardman J, Fastenau JM, Kavalieros J, Kotlyar R, Liu WK, Lubyshev D, Metz M, Mukherjee N, Oakey P, Pillarisetty R, Radosavljevic M, Then HW, Chau R (2011) Fabrication, characterization, and physics of III-V Heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. International Electron Devices Meeting. https://doi.org/10.1109/IEDM.2011.6131666

  56. Ke S, Hu J, Xu X (2019) Independent-gate p-type TFETs using double heterojunction structures. IEEE International Symposium on Circuits and Systems. https://doi.org/10.1109/ISCAS.2019.8702154

Download references

Contributions

Writing - literature search and analysis, original draft preparation: [J.E.Jeyanthi] [A.Sharon Geege], Idea of the article, Resources, Supervision: [T.S.Arun Samuel], Checked the comparison results and validation: [P.Vimala].

Code Availability

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Jeyanthi.

Ethics declarations

Ethics Approval and Consent to Participate

All authors freely agreed and gave their consent for the publication of this paper.

Consent for Publication

All authors freely agreed and gave their consent for the publication of this paper.

Conflicts of Interest/Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyanthi, J.E., Samuel, T.S.A., Geege, A.S. et al. A Detailed Roadmap from Single Gate to Heterojunction TFET for Next Generation Devices. Silicon 14, 3185–3197 (2022). https://doi.org/10.1007/s12633-021-01148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01148-7

Keywords

Navigation