Skip to main content
Log in

Linearity Parameters Evaluation due to Lateral Straggle in Ge-Source DMDG-TFET

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

TFET is very favourable device than MOSFET in terms of low power design and applications. The accurate fabrication of device results in satisfactory electrical characteristics. The diffusion of source/drain regions through the ion implantation technique, extent to the channel section, which eventually changes the behaviour of device. In this letter, the linearity behaviour of Ge-source dual material double gate (DMDG) TFET is highlighted for the variation in lateral straggle parameter (σ) from 0 to 5 nm. The linearity parameters such as higher order harmonics (gm2 and gm3), voltage intercept point (VIP2 and VIP3), input intercept power (IIP3), intermodulation distortion (IMD3), and 1-dB compression point are studied in Ge-source DMDG-TFET taking σ as parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There is no any other data and material associated with this manuscript.

References

  1. Chakraborty S, Mallik A, Sarkar CK, Rao VR (2007) Impact of Halo Doping on the Subthreshold Performance of Deep-Submicrometer CMOS Devices and Circuits for Ultralow Power Analog/Mixed-Signal Applications. IEEE Trans on Electron Devices 54(2):241–248

    Article  Google Scholar 

  2. Zhang Q, Zhao W, Seabaugh A (2006) Low-Subthreshold-Swing Tunnel Transistors. IEEE Electron Device Lett 27(4):297–300

    Article  CAS  Google Scholar 

  3. Kim SH, Kam H, Hu C, Liu T-JK (2009) Ge-Source Tunnel Field Effect Transistors with Record High ION/IOFF. VLSI Symp Tech Dig, pp. 178–179

  4. Saurabh S, Kumar MJ (2011) Novel Attributes of a Dual Material Gate Nanoscale Tunnel Field-Effect Transistor. IEEE Trans on Electron Devices 58(2):404–410

    Article  CAS  Google Scholar 

  5. Chander S, Bhowmick B, Baishya S (2015) Heterojunction Fully Depleted SOI-TFET with Oxide/Source Overlap. Superlattice Microst 86:43–50

    Article  CAS  Google Scholar 

  6. Goswami R, Bhowmick B, Baishya S (2015) Electrical Noise in Circular Gate Tunnel FET in Presence of Interface Traps. Superlattice Microst 86:342–354

    Article  CAS  Google Scholar 

  7. Dash S, Mishra GP (2015) A 2D Analytical Cylindrical Gate Tunnel FET (CG-TFET) Model: Impact of Shortest Tunneling Distance. Adv Nat Sci. Nanosci. Nanotechnol 6:035005

    Article  Google Scholar 

  8. Michielis LD, Lattanzio L, Palestri P, Selmi L, Ionescu AM (2011) Tunnel-FET Architecture with Improved Performance Due to Enhanced Gate Modulation of the Tunneling Barrier. 69th Device Research Conference, Santa Barbara, CA, pp. 111–112

  9. Saha R, Bhowmick B, Baishya S (2019) Impact of WFV on Electrical Parameters due to High-k/Metal Gate in SiGe Channel Tunnel FET. Microelectron Eng 214:1–4

    Article  CAS  Google Scholar 

  10. Liu L, Mohata D, Datta S (2012) Scaling Length Theory of Double-Gate Interband Tunnel Field-Effect Transistors. IEEE Trans on Electron Devices 59:902–908

    Article  CAS  Google Scholar 

  11. Sedighi B, Hu XS, Liu H, Nahas JJ, Niemier M (2015) Analog Circuit Design using Tunnel-FETs. IEEE Trans Circuits Syst I: Regul Pap 62(1):39–48

    Article  Google Scholar 

  12. Settino F, Lanuzza M, Strangio S, Crupi F, Palestri P, Esseni D, Selmi L (2017) Understanding the Potential and Limitations of Tunnel FETs for Low-Voltage Analog/Mixed-Signal circuits. IEEE Trans Electron Devices 64(6):2736–2743

    Article  CAS  Google Scholar 

  13. Strangio S, Settino F, Palestri P, Lanuzza M, Crupi F, Esseni D, Selmi L (2018) Digital and Analog TFET Circuits: Design and Benchmark. Solid State Electron 146:50–65

    Article  CAS  Google Scholar 

  14. Dennard RH, Gaensslen FH, Yu HN, Rideout VL, Bassous E, Leblanc AR (1999) Design of Ion-Implanted MOSFET's with very Small Physical Dimensions. Proc IEEE 87(4):668–678

    Article  Google Scholar 

  15. Kwong MY, Kasnavi R, Griffin P, Plummer JD, Dutton RW (2002) Impact of Lateral Source/Drain Abruptness on Device Performance. IEEE Trans on Electron Devices 49(11):1882–1890

    Article  Google Scholar 

  16. Koley K, Dutta A, Saha SK, Sarkar CK (2014) Effect of Source/Drain Lateral Straggle on Distortion and Intrinsic Performance of Asymmetric Underlap DG-MOSFETs. IEEE J Electron Devices Soc 2(6):135–144

    Article  Google Scholar 

  17. Ghosh S, Koley K, Sarkar CK (2015) Impact of the Lateral Straggle on the Analog and RF Performance of TFET. Microelectron Reliab 55:326–331

    Article  Google Scholar 

  18. Ghosh S, Koley K, Sarkar CK (2018) Deep Insight into Linearity and NQS Parameters of Tunnel FET with Emphasis on Lateral Straggle. IET Micro & Nano Lett 13(1):35–40

    Article  CAS  Google Scholar 

  19. Saha R, Vanlalawmpuia K, Bhowmick B, Baishya S (2019) Deep Insight into DC, RF/Analog, and Digital Inverter Performance due to Variation in Straggle Parameter for Gate Modulated TFET. Mater Sci Semicond Process 91:102–107

    Article  CAS  Google Scholar 

  20. TCAD (2013) Sentaurus User Guide. Synopsys Inc., Mountain View

    Google Scholar 

  21. Biswas A, Dan SS, Royer C, Grabinski LW, Ionescu AM (2012) TCAD Simulation of SOI TFETs and Calibration of Non-Local Band-to-Band Tunneling Model. Microelectron Eng 98:334–337

    Article  CAS  Google Scholar 

  22. Saha R, Bhowmick B, Baishya S (2018) A 3D Statistical Simulation Study of Titanium Metal Gate WFV on Electrical Parameters in n-channel Ge step-FinFET. Appl Phys Mater Sci Process 124:96

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the funding by Science & Engineering Research Board, Govt. of India (Sanction Reference. No. SRG/2019/000628).

Author information

Authors and Affiliations

Authors

Contributions

All the works in this paper have done by Rajesh Saha.

Corresponding author

Correspondence to Rajesh Saha.

Ethics declarations

The author declare that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Conflict of Interest

The author declare that there is no conflict of interest.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable as the manuscript does not contain any data from individual.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, R. Linearity Parameters Evaluation due to Lateral Straggle in Ge-Source DMDG-TFET. Silicon 14, 567–571 (2022). https://doi.org/10.1007/s12633-020-00859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00859-7

Keywords

Navigation