Skip to main content
Log in

Current Transport and Dielectric Analysis of Ni/SiO2/P-Si Diode Prepared by Liquid Phase Epitaxy

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Herein, the Ni/SiO2/p-Si MIS diode was developed via the liquid phase epitaxy (LPE) process. The structural and surface morphology were investigated by XRD and SEM techniques. The electrical study of the device, Ni/SiO2/n-Si, demonstrates a worthy rectification and the electrical parameters of the Schottky diode have computed using the I-V characterization. Different dielectric parameters as capacitance (C), permittivity (ε’), dielectric loss (ε”), conductance and ac conductivity (σac) were evaluated. Moreover, their relation to bias dc voltage has been examined in the frequency range 10 Hz–20 MHz, temperature 303 K to 363 K and DC bias voltage from -2 V to 2 V. Also, the variable investigated parameters were found to be dependent upon temperature, frequency and bias voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee D, Park J-W, Cho N-K et al (2019) Verification of charge transfer in metal-insulator-oxide semiconductor diodes via defect engineering of insulator. Sci Rep 9:1–9

    Google Scholar 

  2. Lee J, Yoon K, Lim K-H et al (2018) Vertical transport control of electrical charge carriers in insulator/oxide semiconductor hetero-structure. Sci Rep 8:1–9

    Google Scholar 

  3. Tanrıkulu EE, Yıldız DE, Günen A, Altındal Ş (2015) Frequency and voltage dependence of electric and dielectric properties of au/TiO2/n-4H-SiC (metal-insulator-semiconductor) type Schottky barrier diodes. Phys Scr 90:95801

    Google Scholar 

  4. Har-Lavan R, Ron I, Thieblemont F, Cahen D (2009) Toward metal-organic insulator-semiconductor solar cells, based on molecular monolayer self-assembly on n-Si. Appl Phys Lett 94:27

    Google Scholar 

  5. Lin C-H, Liu CW (2010) Metal-insulator-semiconductor photodetectors. Sensors 10:8797–8826

    CAS  PubMed  PubMed Central  Google Scholar 

  6. An Y, Behnam A, Pop E, Ural A (2013) Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions. Appl Phys Lett 102:13110

    Google Scholar 

  7. Tsai D-S, Lin C-A, Lien W-C, Chang HC, Wang YL, He JH (2011) Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays. ACS Nano 5:7748–7753

    CAS  PubMed  Google Scholar 

  8. Li H-M, Lee D-Y, Choi MS et al (2014) Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors. Sci Rep 4:1–7

    Google Scholar 

  9. Lin C-H, Yeh W-T, Chan C-H, Lin C-C (2012) Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes. Nanoscale Res Lett 7:1–6

    Google Scholar 

  10. Afsal M, Wang C-Y, Chu L-W, Ouyang H, Chen LJ (2012) Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO 2 core–shell nanowires. J Mater Chem 22:8420–8425

    CAS  Google Scholar 

  11. Malik A, Grimalsky V, Tsou MC, et al (2003) MIS capacitor radiation sensor with giant internal signal amplification on a base of UHR epi silicon [photodetector]. In: ESSDERC’03. 33rd conference on European solid-state device research, 2003. IEEE, pp 67–70

  12. Gomila G (1999) Effects of interface states on the non-stationary transport properties of Schottky contacts and metal-insulator-semiconductor tunnel diodes. J Phys D Appl Phys 32:64–71

    CAS  Google Scholar 

  13. Bayindir M, Sorin F, Abouraddy AF, Viens J, Hart SD, Joannopoulos JD, Fink Y (2004) Metal–insulator–semiconductor optoelectronic fibres. Nature 431:826–829

    CAS  PubMed  Google Scholar 

  14. Saλam M, Ayyildiz E, Gümüs A, Türüt A, Efeoλu H, Tüzemen S (1996) Series resistance calculation for the metal-insulator-semiconductor Schottky barrier diodes. Appl Phys A Mater Sci Process 62:269–273

    Google Scholar 

  15. Kim H, Hong S-H, Park YC et al (2014) Rapid thermal-treated transparent electrode for photodiode applications. Mater Lett 115:45–48

    CAS  Google Scholar 

  16. Ashery A, Elnasharty MMM, Khalil AAI, Azab AA (2020) Negative resistance, capacitance in Mn/SiO2/p-Si MOS structure. Mater Res Express 7:85901

    CAS  Google Scholar 

  17. Nasr M, El Radaf IM, Mansour AM (2018) Current transport and capacitance–voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique. J Phys Chem Solids 115:283–288

    CAS  Google Scholar 

  18. El Radaf IM, Nasr M, Mansour AM (2018) Structural, electrical and photovoltaic properties of CoS/Si heterojunction prepared by spray pyrolysis. Mater Res Express 5:15904

    Google Scholar 

  19. El Radaf IM, Al-Kotb MS, Nasr M, Yahia IS (2019) Fabrication and electrical characterization of the InSbS3/n-Si heterojunction. J Alloys Compd 788:206–211

    Google Scholar 

  20. Sakr GB (2013) Characterization of Al/p-Si/n-AgGaSe2/au thin films heterojunction device. Mater Chem Phys 138:951–955

    CAS  Google Scholar 

  21. Mansour AM, Yahia IS, El Radaf IM (2018) Structural, electrical and photovoltaic properties of PbSb2S5/n-Si heterojunction synthesized by vacuum coating technique. Mater Res Express 5:76406

    Google Scholar 

  22. Salem SM, Osaman MBS, Salem AM et al (2014) Fabrication and characterization CuSbS2/n-Si solar cells. J Appl Sci Res 9:6668–6677

    Google Scholar 

  23. El Radaf IM, Elsaeedy HI, Yakout HA, El Sayed MT (2019) Junction parameters and electrical characterization of the Al/n-Si/cu 2 CoSnS 4/au Heterojunction. J Electron Mater 48:6480–6486

    Google Scholar 

  24. Ashery A, El Radaf IM, Elnasharty MMM (2019) Electrical and dielectric characterizations of Cu2ZnSnSe4/n-Si Heterojunction. Silicon 11:2567–2574

    CAS  Google Scholar 

  25. Nasr M, Mansour AM, El Radaf IM (2018) Current transport and capacitance-voltage characteristics of Sb2Se3/n-Si heterojunction diode prepared by electron beam evaporation. Mater Res Express 6:36405

    Google Scholar 

  26. Al-Zahrani HYS, El Radaf IM (2020) Fabrication, electrical and photovoltaic characterizations of SnSb2S4/n-Si Heterojunction. Silicon. https://doi.org/10.1007/s12633-020-00512-3

  27. El Radaf IM, Mansour AM, Sakr GB (2018) Fabrication, electrical and photovoltaic characteristics of CuInGeSe4/n-Si diode. J Semicond 39:124010

    Google Scholar 

  28. El Radaf IM, El-Bana MS (2020) Synthesis and characterization of the CuSbSe2/n-Si heterojunction: electrical and photovoltaic characterizations. Phys B Condens Matter 584:412067

    Google Scholar 

  29. Byrum LE, Ariyawansa G, Jayasinghe RC, Dietz N, Perera AGU, Matsik SG, Ferguson IT, Bezinger A, Liu HC (2009) Negative capacitance in Ga N∕ Al Ga N heterojunction dual-band detectors. J Appl Phys 106:53701

    Google Scholar 

  30. Tataroğlu A, Dayan O, Özdemir N, Serbetci Z, al-Ghamdi AA, Dere A, el-Tantawy F, Yakuphanoglu F (2016) Single crystal ruthenium (II) complex dye based photodiode. Dyes Pigments 132:64–71

    Google Scholar 

  31. Hirose N, West AR (1996) Impedance spectroscopy of undoped BaTiO3 ceramics. J Am Ceram Soc 79:1633–1641

    CAS  Google Scholar 

  32. Al-Dharob MH, Kökce A, Aldemir DA, et al (2020) The origin of anomalous peak and negative capacitance on dielectric behavior in the accumulation region in au/(0.07 Zn-doped polyvinyl alcohol)/n-4H–SiC metal-polymer-semiconductor structures/diodes studied by temperature-dependent impedance measurements. J Phys Chem solids 144:109523

  33. Cetinkaya HG, Yıldırım M, Durmus P, Altındal S (2017) Diode-to-diode variation in dielectric parameters of identically prepared metal-ferroelectric-semiconductor structures. J Alloys Compd 728:896–901

    CAS  Google Scholar 

  34. Sattar AA, Rahman SA (2003) Dielectric properties of rare earth substituted cu–Zn ferrites. Phys Status Solidi 200:415–422

    CAS  Google Scholar 

  35. Dutta P, Biswas S, De SK (2002) Dielectric relaxation in polyaniline–polyvinyl alcohol composites. Mater Res Bull 37:193–200

    CAS  Google Scholar 

  36. Karabulut A, Türüt A, Karataş Ş (2018) The electrical and dielectric properties of the au/Ti/HfO2/n-GaAs structures. J Mol Struct 1157:513–518

    CAS  Google Scholar 

  37. Perera AGU, Shen WZ, Ershov M, Liu HC, Buchanan M, Schaff WJ (1999) Erratum:“negative capacitance of GaAs homojunction far-infrared detectors”. Appl Phys Lett 75:304

    CAS  Google Scholar 

  38. Ehrenfreund E, Lungenschmied C, Dennler G, Neugebauer H, Sariciftci NS (2007) Negative capacitance in organic semiconductor devices: bipolar injection and charge recombination mechanism. Appl Phys Lett 91:12112

    Google Scholar 

  39. Badapanda T, Sarangi S, Parida S et al (2015) Frequency and temperature dependence dielectric study of strontium modified barium zirconium Titanate ceramics obtained by mechanochemical synthesis. J Mater Sci Mater Electron 26:3069–3082

    CAS  Google Scholar 

  40. Gozeh BA, Karabulut A, Yildiz A, Yakuphanoglu F (2018) Solar light responsive ZnO nanoparticles adjusted using cd and La co-dopant photodetector. J Alloys Compd 732:16–24

    CAS  Google Scholar 

  41. Al-Hartomy OA, Gupta RK, Al-Ghamdi AA, Yakuphanoglu F (2014) High performance organic-on-inorganic hybrid photodiodes based on organic semiconductor-graphene oxide blends. Synth Met 195:217–221

    CAS  Google Scholar 

  42. Ertuğrul R, Tataroğlu A (2014) Effects of gamma irradiation on electrical parameters of metal–insulator–semiconductor structure with silicon nitride interfacial insulator layer. Radiat Eff Defects Solids 169:791–799

    Google Scholar 

  43. Karataş Ş (2019) Frequency and voltage dependent electrical and dielectric properties of Ag/nGO doped PVA/p-Si sandwich structure at room temperature. J Sandw Struct Mater:1099636219840605

  44. Durmuş H, Karataş Ş (2019) The analysis of the electrical characteristics and interface state densities of re/n-type Si Schottky barrier diodes at room temperature. Int J Electron 106:507–520

    Google Scholar 

  45. Gupta RK, Yakuphanoglu F (2012) Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Sol Energy 86:1539–1545

    CAS  Google Scholar 

  46. Das AK, Hatada R, Ensinger W, Flege S, Baba K, Meikap AK (2018) Dielectric constant, AC conductivity and impedance spectroscopy of zinc-containing diamond-like carbon film UV photodetector. J Alloys Compd 758:194–205

    CAS  Google Scholar 

  47. Marıl E, Tan SO, Altındal Ş, Uslu İ (2018) Evaluation of electric and dielectric properties of metal–semiconductor structures with 2% GC-doped-(Ca3Co4Ga0.001Ox) interlayer. IEEE Trans Electron Devices 65:3901–3908

    Google Scholar 

  48. Demirezen S, Kaya A, Yerişkin SA, Balbaşı M, Uslu İ (2016) Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors. Results Phys 6:180–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. El Radaf.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashery, A., Elnasharty, M.M.M. & El Radaf, I.M. Current Transport and Dielectric Analysis of Ni/SiO2/P-Si Diode Prepared by Liquid Phase Epitaxy. Silicon 14, 153–163 (2022). https://doi.org/10.1007/s12633-020-00808-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00808-4

Keywords

Navigation