Skip to main content
Log in

Vertically Extended Drain Double Gate Si1−xGex Source Tunnel FET : Proposal & Investigation For Optimized Device Performance

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper reports an unique approach to suppress ambipolarity and enhance drive current in tunnel field effect transistor (TFET) by incorporating vertically extending drain in double gate Si1−xGex source TFET. This structure has dual source extending laterally on both sides of the channel with vertically extended drain over the T-shaped channel (VD-DG-Si1−xGexS-TFET). Our study is based on calibrated exhaustive 2-D TCAD simulations. It advocates that the device performance is not only retained but significantly enhanced even by deploying only double gate instead of quadruple gate with Si1−xGex sources. Further the drive current can be significantly increased by optimizing the mole fraction (x) in Si1−xGex source. Our study reveals that the average subthreshold slope (SSavg) is 23.98 m V/dec (point SS (SSpoint) is 12.7 m V/dec with sub-60 m V/dec point SS for 107 orders of current change), drive current (ION) is 2.73× 10− 4 A/um and 46% improvement in transconductance as compared to the earlier reported drain engineered quardruple gate TFET. Further the device sensitivity analysis with respect to gate oxide dielectric constant, gate metal work-function, temperature and germanium mole fraction variation is also analyzed here. Moreover, in terms of device analog behaviour, the cut off frequency (ft) is reported as 38.93 GHz and 140% increment in gain bandwidth product (GWB) as compared to its quardruple gate alternative. This study proves the potentials of considered device structure as a promising candidate for ultra low power analog/RF and digital logic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shalf J (2020) The future of computing beyond Moore‘s law. Philos Trans Royal Soc A 378 (2166):20190061

    Article  Google Scholar 

  2. Sakurai T (2004) Perspectives of low-power VLSI’s. IEICE Trans Electron 87(4):429–436

    Google Scholar 

  3. Bangsaruntip S, Cohen GM, Majumdar A, Sleight JW (2010) Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. IEEE Electron Device Lett 31(9):903–905

    Article  CAS  Google Scholar 

  4. Singh S, Kondekar PN, Jaiswal NK (2016) Label-free biosensor using nanogap embedded dielectric modulated schottky tunneling source impact ionization MOS. Microelectron Eng 149:129–134

    Article  CAS  Google Scholar 

  5. Nirschl T, Fischer J, Fulde M, Bargagli-Stoffi A, Sterkel M, Sedlmeir J, Weber C, Heinrich R, Schaper U, Einfeld J, Neubert R (2006) Scaling properties of the tunneling field effect transistor (TFET): Device and circuit. Solid-State Electron 50(1):44–51

    Article  CAS  Google Scholar 

  6. Kim SW, Choi WY, Sun MC, Kim HW, Park BG (2012) Design guideline of Si-based L shaped tunneling field-effect transistors, vol 51

  7. Kim SW, Kim JH, Liu TJK, Choi WY, Park BG (2015) Demonstration of L shaped tunnel field-effect transistors. IEEE Trans Electron Devices 63(4):1774–1778

    Article  Google Scholar 

  8. Wang W, Wang PF, Zhang CM, Lin X, Liu XY, Sun QQ, Zhou P, Zhang DW (2013) Design of U-shape channel tunnel FETs with SiGe source regions. IEEE Trans Electron Devices 61(1):193–197

    Article  Google Scholar 

  9. Yang Z (2016) Tunnel field-effect transistor with an L-shaped gate. IEEE Electron Device Lett 37(7):839–842

    Article  CAS  Google Scholar 

  10. Krishnamohan T, Kim D, Raghunathan S, Saraswat K (2008) Double-gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and 60 mV/dec subthreshold slope. In: IEEE international electron devices meeting, pp 1–3

  11. Saurabh S, Kumar MJ (2010) Novel attributes of a dual material gate nanoscale tunnel fieldeffect transistor. IEEE Trans Electron Devices 58(2):404–410

    Article  Google Scholar 

  12. Chang HY, Adams B, Chien PY, Li J, Woo JC (2012) Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing. IEEE Trans Electron Devices 60(1):92–96

    Article  Google Scholar 

  13. Kumar MJ, Janardhanan S (2013) Doping-less tunnel field effect transistor: design and investigation. IEEE Trans Electron Devices 60(10):3285–3290

    Article  CAS  Google Scholar 

  14. Vladimirescu A, Amara A, Anghel C (2012) An analysis on the ambipolar current in Si double gate tunnel FETs. Solid State Electron 70:67–72

    Article  Google Scholar 

  15. Singh S, Singh AP, Kondekar PN (2017) A novel self-aligned charge plasma Schottky barrier tunnel FET using work function engineering. Microelectron Eng 168:67–75

    Article  CAS  Google Scholar 

  16. Choi WY, Lee W (2010) Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans Electron Devices 57(9):2317–2319

    Article  Google Scholar 

  17. Verhulst AS, Vandenberghe WG, Maex K, Groeseneken G (2007) Tunnel field-effect transistor without gate-drain overlap. Appl Phys Lett 91(5):053102

    Article  Google Scholar 

  18. Wan J, Le Royer C, Zaslavsky A, Cristoloveanu S (2010) SOI TFETS: Suppression of ambipolar leakage and low-frequency noise behavior. In: IEEE 2010 proceedings of the european solid state device research conference, pp 341–344

  19. Shaker A, El-Sabbagh M, El-Banna MM (2017) Influence of drain doping engineering on the ambipolar conduction and high-frequency performance of TFETs. IEEE Trans Electron Devices 64(9):3541–3547

    Article  CAS  Google Scholar 

  20. Bashir F, Loan SA, Rafat M, Alamoud ARM, Abbasi SA (2015) A high-performance source engineered charge plasma-based Schottky MOSFET on SOI. IEEE Trans Electron Devices 62(10):3357–3364

    Article  CAS  Google Scholar 

  21. Boucart K, Ionescu AM (2007) Double-Gate Tunnel FET with high- gate dielectric. IEEE Trans Electron Devices 54(7):1725–1733

    Article  CAS  Google Scholar 

  22. Shaikh MRU, Loan SA (2019) Drain-Engineered TFET With fully suppressed ambipolarity for High-Frequency application. IEEE Trans Electron Devices 66(4):1628–1634

    Article  Google Scholar 

  23. Solomon PM, Jopling J, Frank DJ, D’Emic C, Dokumaci O, Ronsheim P, Haensch WE (2004) Universal tunneling behavior in technologically relevant P/N junction diodes. J Appl Phys 95(10):5800–5812

    Article  CAS  Google Scholar 

  24. ATLAS Device Simulation Software (2013) Silvaco Int. Santa Clara, CA, USA

  25. Omura Y, Horiguchi S, Tabe M, Kishi K (1993) Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Electron Device Lett 14(12):569–571

    Article  CAS  Google Scholar 

  26. Zhao QT, Hartmann JM, Mantl S (2011) An improved Si tunnel field effect transistor with a buried strained \(Si_{1_{x}} Ge_{x}\) source. IEEE Electron Device Lett 32(11):1480–1482

    Article  CAS  Google Scholar 

  27. Cressler J. D. (ed) (2006) Heterostructure handbook. Taylor and Francis, New York

    Google Scholar 

  28. Born M, Bhuwalka KK, Schindler M, Abelein U, Schmidt M, Sulima T, Eisele I (2006) Tunnel FET:, A CMOS device for high temperature applications. In: 25th international conference on microelectronics, pp 124–127

  29. Guo PF, Yang LT, Yang Y, Fan L, Han GQ, Samudra GS, Yeo YC (2009) Tunneling field effect transistor: Effect of strain and temperature on tunneling current. IEEE Electron Device Lett 30(9):981–983

    Article  CAS  Google Scholar 

  30. Narang R, Saxena M, Gupta RS, Gupta M (2013) Impact of temperature variations on the device and circuit performance of tunnel FET: a simulation study. IEEE Trans Nanotechnol 12(6):951–957

    Article  CAS  Google Scholar 

  31. Zhang Q, Zhao W, Seabaugh A (2006) Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett 27(4):297–300

    Article  CAS  Google Scholar 

  32. Zhi J, Yiqi Z, Cong L, Ping W, Yuqi L (2016) Vertical-dual-source tunnel FETs with steeper subthreshold swing. J Semicond 37(9):094003

    Article  Google Scholar 

  33. Karbalaei M, Dideban D, Heidari H (2020) Impact of high-k gate dielectric with different angles of coverage on the electrical characteristics of gate-all-around field effect transistor: A simulation study, vol 16

  34. Pillarisetty R, Chu-Kung B, Corcoran S, Dewey G, Kavalieros J, Kennel H, Kotlyar R, Le V, Lionberger D, Metz M, Mukherjee N (2010) High mobility strained germanium quantum well field effect transistor as the p-channel device option for low power (Vcc= 0.5 V) III–V CMOS architecture. In: International electronics devices meeting, pp 6–7

  35. Tezuka T, Sugiyama N, Takagi S (2001) Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction. Appl Phys Lett 79(12):798–1800

    Article  Google Scholar 

  36. Liow TY, Tan KM, Yeo YC, Agarwal A, Du A, Tung CH, Balasubramanian N (2005) Investigation of silicon-germanium fins fabricated using germanium condensation on vertical compliant structures. Appl Phys Lett 87(26):262104

    Article  Google Scholar 

  37. Balakumar S, Buddharaju KD, Tan B, Rustagi SC, Singh N, Kumar R, Lo GQ, Tripathy S, Kwong DL (2009) Germanium-rich SiGe Nanowires formed through oxidation of patterned SiGe FINs on insulator. J Electron Mater 38(3):443–448

    Article  CAS  Google Scholar 

  38. Jiang Y, Singh N, Liow TY, Loh WY, Balakumar S, Hoe KM, Tung CH, Bliznetsov V, Rustagi SC, Lo GQ, Chan DSH (2008) Ge-rich. 70 Devices Letter 29(6):595–598

    Article  CAS  Google Scholar 

  39. Ko E, Lee H, Park JD, Shin C (2016) Vertical tunnel FET: Design optimization with triple metal-gate layers. IEEE Trans Electron Devices 63(12):5030–5035

    Article  CAS  Google Scholar 

  40. Garg S, Saurabh S (2018) Suppression of ambipolar current in tunnel FETs using drain-pocket: Proposal and analysis. Superlattice Microst 113:261–270

    Article  CAS  Google Scholar 

  41. Vladimirescu A, Amara A, Anghel C (2012) An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid-State Electron 70:67–72

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the National Institute of Technology, Raipur for providing the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A., Singh, S., Priyadarshani, K.N. et al. Vertically Extended Drain Double Gate Si1−xGex Source Tunnel FET : Proposal & Investigation For Optimized Device Performance. Silicon 13, 2589–2604 (2021). https://doi.org/10.1007/s12633-020-00603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00603-1

Keywords

Navigation