Skip to main content
Log in

Teaching—Learning-Based Optimization Coupled with Response Surface Methodology for Micro Electrochemical Machining of ALUMINIUM NANOCOMPOSITE

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, Micro Electro Chemical Machining (μECM) of aluminium alloy (AA) 7075 reinforced with nano silicon carbide particles (1.5 wt.%) has been effectively investigated and reported. The ultrasonic cavitation-based solidification process was employed for fabricating the nanocomposite, and machining studies were performed based on the experimental design matrix formulated using the central composite approach of Response Surface Methodology (RSM). The parameters which were applied to study their effects are: voltage, concentration of electrolyte, duty cycle, and rate of tool feed with an objective of optimizing Material Removal Rate (MRR), radial overcut, surface roughness and wear on tool electrode. Multi-Objective optimization was performed with desirability analysis, a second-order empirical equation was formulated for all outputs, and the most influential input parameters were recognized by applying Analysis of Variance (ANOVA). An evolutionary Teaching-Learning-Based Optimization (TLBO) algorithm was also performed considering surface roughness as a constraint, in order to compare the results with desirability analysis. The results obtained have coincided very well with the RSM result considering a target surface roughness value of 0.4 μm, proving the superiority of the TLBO algorithm over the RSM approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kandemir S (2017) Microstructure and mechanical properties of A357/SiC nanocomposites fabricated by ultrasonic cavitation-based dispersion of ball-milled nanoparticles. J Compos Mater 51(3):395–404. https://doi.org/10.1177/0021998316644850

    Article  CAS  Google Scholar 

  2. Li X, Yang Y, Weiss D (2008) Theoretical and experimental study on ultrasonic dispersion of nanoparticles for strengthening cast aluminum alloy A356. Metallurgical Science and Technology 26-2:12–20

    Google Scholar 

  3. Donthamsetty S, Babu PS (2017) Experiments on the wear characteristics of A356 MMNCs fabricated using ultrasonic cavitation. International journal of automotive and mechanical engineering 14, issue 4:4589-4602. DOI. https://doi.org/10.15282/ijame.14.4.2017.1.0362

  4. Gopalakannan S, Senthilvelan T (2015) Synthesis and characterisation of Al 7075 reinforced with SiC and B4C nanoparticles fabricated by ultrasonic cavitation method. J Sci Ind Res 74:281–285

    CAS  Google Scholar 

  5. Marini CD, Fatchurrohman N (2015) A review on the fabrication techniques of aluminium matrix nanocomposites. Jurnal Teknologi 74(10):103–109

    Article  Google Scholar 

  6. Kaboorani A, Riedl B, Pierre Blanchet (2013) Ultrasonication technique: a method for dispersing Nanoclay in wood adhesives. Journal of Nanomaterials, volume 2013. Article ID:341897, 9 pages https://doi.org/10.1155/2013/341897

  7. Saravanan D, Arularasu M, Ganesan K (2012) A study on electrochemical micromachining of super duplex stainless steel for biomedical filters. ARPN journal of engineering and applied sciences 7 no 5: 517-523

  8. Prakash J, Gopalakannan S (2015) Experimental investigation and performance characteristics study of electrolyte in micro electrochemical machining. Appl Mech Mater 787:416–420. https://doi.org/10.4028/www.scientific.net/AMM.787.416

    Article  Google Scholar 

  9. Groover M. P (2013) Fundamentals of Modern Manufacturing. Materials Processes, And Systems, 5th edition, John Wiley & Sons, Inc. USA 2013

  10. Pandey PC, Shan HS (2008) Modern machining processes. Tata McGraw-Hill Publishing Company Limited New Delhi

  11. Mehrvar A, Basti A, Jamali A (2016) Optimization of electrochemical machining process parameters: combining response surface methodology and differential evolution algorithm. Proc IMechE Part E: J Process Mechanical Engineering 0(0): 1–13. DOI: https://doi.org/10.1177/0954408916656387

  12. Senthilkumar C, Ganesan G, Karthikeyan R (2009) Study of electrochemical machining characteristics of Al/SiCp composites. Int J Adv Manuf Technol 43:256–263. https://doi.org/10.1007/s00170-008-1704-1

    Article  Google Scholar 

  13. You Z, Wang X (2018) Micro/Nano Technologies. Springer Nature Singapore Pte Ltd.

  14. Bhattacharyya B (2015) Electrochemical micromachining for nanofabrication. MEMS and Nanotechnology, Elsevier USA

    Google Scholar 

  15. Bhattacharyya B, Mitra S, Boro AK (2002) Electrochemical machining: new possibilities for micromachining. Robot CIM Int Manuf 18:283–289

    Article  Google Scholar 

  16. Wuthrich R, Ziki JDA (2015) Micromachining using electrochemical discharge phenomenon. Second edition Fundamentals and Application of Spark Assisted Chemical Engraving, Elsevier Inc USA

    Google Scholar 

  17. Kalra CS, Kumar K, Manna A (2018) Analysis of electrochemical behavior on micro-drilling of cast hybrid Al/(Al2O3p+SiCp+Cp)-MMC using micro-ECM process. Journal of Materials Design and Applications 232(1):67–79. https://doi.org/10.1177/1464420715615907

    Article  CAS  Google Scholar 

  18. Subramaniam B, Natarajan B, Kaliyaperumal B, Chelladurai SJS (2018) Investigation on mechanical properties of aluminium 7075-boron carbide-coconut shell fly ash reinforced hybrid metal matrix composites. China Foundry 15(6):449–456. https://doi.org/10.1007/s41230-018-8105-3

    Article  Google Scholar 

  19. Subramaniam B, Natarajan B, Kaliyaperumal B, Chelladurai S J S (2019) Wear behaviour of aluminium 7075—boron carbide-coconut shell fly ash reinforced hybrid metal matrix composites. Materials research express 6(10): 1065d3 https://doi.org/10.1088/2053-1591/ab4052

  20. Murthy NV, Reddy AP, Selvaraj N, Rao CSP (2016) Preparation of SiC based aluminium metal matrix nanocomposites by high intensity ultrasonic cavitation process and evaluation of mechanical and tribological properties. IOP Conf. Series: materials science and engineering 149:012106. https://doi.org/10.1088/1757-899X/149/1/012106

  21. Egashira K, Hayashi A, Hirai Y, Yamaguchi K, Ota M (2018) Drilling of microholes using electrochemical machining. Precision engineering 54:338-343 DOIhttps://doi.org/10.1016/j.precisioneng.2018.07.002. https://doi.org/10.1016/j.precisioneng.2018.07.002

  22. Maged A, Haridy S, Shamsuzzaman M, Alsyouf I, Zaied R (2018) Statistical monitoring and optimization of electrochemical machining using Shewhart charts and response surface methodology. International journal of engineering materials and manufacture 3(2): 68-77 DOI. https://doi.org/10.26776/ijemm.03.02.2018.01

  23. Rao RV (2016) Teaching learning based optimization algorithm: and its engineering applications. Springer International Publishing Switzerland

  24. Sahu N.K, Andhare A.B (2019) Multiobjective optimization for improving machinability of Ti-6Al-4V using RSM and advanced algorithms. Journal of Computational Design and Engineering 6 1:1–12 DOI: https://doi.org/10.1016/j.jcde.2018.04.004

  25. Gopalakannan S, Senthilvelan T (2013a) Application of response surface method on machining of Al-SiC Nanocomposites. Measurement 46 (8):2705-2715 DOI. https://doi.org/10.1016/j.measurement.2013.04.036, https://doi.org/10.1016/j.measurement.2013.04.036

  26. Poovazhagan L, Amith SC, Avudaiappan AK, Haripriya P (2015) Influence of particle feeding methods on processing the AA6061/SiC metal matrix Nanocomposites. Appl Mech Mater 787:648–652. https://doi.org/10.4028/www.scientific.net/AMM.787.648

    Article  Google Scholar 

  27. Malaki M, Xu W, Kasar AK, Menezes PL, Dieringa H, Varma RS, Gupta M (2019) Advanced metal matrix Nanocomposites. Metals 9:330. https://doi.org/10.3390/met9030330

    Article  CAS  Google Scholar 

  28. Gopalakannan S, Senthilvelan T (2013b) EDM of cast Al/SiC metal matrix nanocomposites by applying response surface method. Int J Adv Manuf Technol 67(1–4):485–493. https://doi.org/10.1007/s00170-012-4499-z

    Article  Google Scholar 

  29. Malapati M, Bhattacharyya B (2011) Investigation into electrochemical micromachining process during Micro-Channel generation. Mater Manuf Process 26(8):1019–1027. https://doi.org/10.1080/10426914.2010.525575

    Article  CAS  Google Scholar 

  30. Wu YY, Sheu DY (2018) Investigating tungsten carbide micro-hole drilling characteristics by desktop micro-ECM with NaOH solution. Micromachines (Basel) 9(10):512. https://doi.org/10.3390/mi9100512

    Article  Google Scholar 

  31. Senthilkumar N, Tamizharasan T, Gobikannan S (2014) Application of response surface methodology and firefly algorithm for optimizing multiple responses in turning AISI 1045 steel. Arab J Sci Eng 39(11):8015–8030. https://doi.org/10.1007/s13369-014-1320-3

    Article  Google Scholar 

  32. Munda J, Bhattacharyya B (2008) Investigation into electrochemical micromachining (EMM) through response surface methodology based approach. Int J Adv Manuf Technol 35(7–8):821–832. https://doi.org/10.1007/s00170-006-0759-0

    Article  Google Scholar 

  33. Malapati M, Sarkar A, Bhattacharyya B (2011) Frequency pulse period and duty factor effects on electrochemical micromachining (EMM). Adv Mater Res 264-265:1334–1339. https://doi.org/10.4028/www.scientific.net/AMR.264-265.1334

    Article  CAS  Google Scholar 

  34. Thanigaivelan R, Arunachalam RM, Drukpa P (2012) Drilling of micro-holes on copper using electrochemical micromachining. Int J Adv Manuf Technol 61:1185–1190. https://doi.org/10.1007/s00170-012-4093-4

    Article  Google Scholar 

  35. Rao SR, Padmanabhan G (2013) Optimization of machining parameters in ECM of Al/B4C composites. Journal of manufacturing science production 13(3):145–153. https://doi.org/10.1515/jmsp-2012-0039

    Article  Google Scholar 

  36. Bhattacharyya B, Munda J (2003) Experimental investigation into electrochemical micromachining (EMM) process. J Mater Process Technol 140:287–291. https://doi.org/10.1016/S0924-0136(03)00722-2

    Article  CAS  Google Scholar 

  37. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  38. Rao RV, Savsani VJ, Vakharia DP (2012a) Teaching-learning-based optimization: a novel optimization method for continuous non-linear large scale problems. Inf Sci 183(1):1–15. https://doi.org/10.1016/j.ins.2011.08.006

    Article  Google Scholar 

  39. Rao R.V, Savsani V.J, Balic J (2012b) Teaching-learning-based optimization algorithm for unconstrained and constrained real parameter optimization problems. Engineering Optimization 44(12):1447–1462.DOI: https://doi.org/10.1080/0305215X.2011.652103

  40. Rao R.V, Savsani V.J (2012) Mechanical design optimization using advanced optimization techniques. London: Springer-Verlag DOI: https://doi.org/10.1007/978-1-4471-2748-2

  41. Maity K, Mishra H (2018) ANN modelling and elitist teaching learning approach for multi-objective optimization of μ–EDM. J Intell Manuf 29(7):1599–1616. https://doi.org/10.1007/s10845-016-1193-2

    Article  Google Scholar 

  42. Dikshit M.K, Puri A.B, Maity A (2016) Optimization of surface roughness in ball-end milling using teaching-learning-based optimization and response surface methodology. Proc IMechE Part B: J Engineering Manufacture 1–12 231 14: 2596–2607. DOI: https://doi.org/10.1177/0954405416634266

  43. Kulkarni SK (2015) Nanotechnology: principles and practices. Third edition, Capital Publishing Company New Delhi India DOI. https://doi.org/10.1007/978-3-319-09171-6

  44. Mayeen A, Shaji LK, Nair AK, Kalarikkal N (2018) Characterization of Nanomaterials: advances and key technologies micro and Nano Technologies. Woodhead Publishing, UK, pp 335–364. https://doi.org/10.1016/C2016-0-01721-7

    Book  Google Scholar 

  45. Venkatesh C, Arun NM, Venkatesan R (2014) Optimization of micro drilling parameters of B4C DRMM Al 6063 composite in μECM using Taguchi coupled fuzzy logic. Procedia Eng 97:975–985. https://doi.org/10.1016/j.proeng.2014.12.374

    Article  CAS  Google Scholar 

  46. Madhankumar S, Manonmani K, Rajesh S, Balamurugan R, Harikrishnan M (2018) Optimization of micro electrochemical machining of Inconel 625 using Taguchi based Grey relational analysis. International journal of applied engineering research 13: 6771-6779. DOI: ripublication.com/ijaer18/ijaerv13n9_37.pdf

  47. Winkelmann C, Lang W (2013) Influence of the electrode distance and metal ion concentration on the resulting structure in electrochemical micromachining with structured counter electrodes. Int J Mach tools Manuf 72:25–31. DOI https://doi.org/10.1016/j.ijmachtools.2013.05.004

  48. Mukherjee SK, Kumar S, Srivastava PK (2005) Effect of over voltage on material removal rate during electrochemical machining. Tamkang Journal of Science and Engineering 8(1):23–28

    Google Scholar 

  49. Das MK, Barman TK, Kumar K, Sahoo P (2017) Effect of process parameters on MRR and surface roughness in ECM of EN 31 tool steel using WPCA. International Journal of Materials Forming and Machining Processes 4(2):45–63. https://doi.org/10.4018/IJMFMP.2017070104

    Article  Google Scholar 

  50. Chen X, Xu Z, Zhu D, Fang Z, Zhu D (2016) Experimental research on electrochemical machining of titanium alloy Ti60 for a blisk. Chin J Aeronaut 29(1):274–282 https://doi.org/10.1016/j.cja.2015.09.010

    Article  Google Scholar 

  51. Mithu MAH, Fantoni G, Ciampi J (2011) The effect of high frequency and duty cycle in electrochemical microdrilling. Int J Adv Manuf Technol 55:921–933. https://doi.org/10.1007/s00170-010-3123-3

    Article  Google Scholar 

  52. Mohanty A, Talla G, Dewangan S, Gangopadhyay S (2014) Experimental study of material removal rate, surface roughness & microstructure in electrochemical machining of Inconel 825, 5th international & 26th all India manufacturing technology, design and research conference (AIMTDR 2014) December 12th –14th, 2014. IIT Guwahati, Assam, India

  53. Rao SR, Padmanabhan G, Naidu KM, Reddy AR (2014) Parametric study for radial over cut in electrochemical Drilling of Al-5%B4Cp composites. Procedia Engineering 97:1004–1011. https://doi.org/10.1016/j.proeng.2014.12.377

    Article  CAS  Google Scholar 

  54. Kozak J, Rajurkar KP, Makkar Y (2004) Study of pulse electrochemical micromachining. J Manuf Process 6(1):7–14. https://doi.org/10.1016/S1526-6125(04)70055-9

    Article  Google Scholar 

  55. Fang X, Qu N, Zhang Y, Xu Z, Zhu D (2014) Improvement of hole exit accuracy in electrochemical drilling by applying a potential difference between an auxiliary electrode and the anode. J Mater Process Technol 214(3):556–564 https://doi.org/10.1016/j.jmatprotec.2013.11.008

    Article  CAS  Google Scholar 

  56. Sharma S, Jain VK, Shekhar R (2002) Electrochemical drilling of inconel super alloy with acidified sodium chloride electrolyte. Int J Adv Manuf Technol 19(7):492–500. https://doi.org/10.1007/s001700200052

    Article  Google Scholar 

  57. Wang M, Peng W, Yao C, Zhang Q (2010) Electrochemical machining of the spiral internal turbulator. Int J Adv Manuf Technol 49(9–12):969–973. https://doi.org/10.1007/s00170-009-2462-4

    Article  CAS  Google Scholar 

  58. Leese R, Ivanov A (2018) Electrochemical micromachining: review of factors affecting the process applicability in micro-manufacturing. Proceedings of IMechE Part B: Journal of Engineering Manufacture 232(2):195–207. https://doi.org/10.1177/0954405416640172

    Article  CAS  Google Scholar 

  59. Fan ZW, Hourng LW, Lin MY (2012) Experimental investigation on the influence of electrochemical micro-drilling by short pulsed voltage. Int J Adv Manuf Technol 61(9–12):957–966. https://doi.org/10.1007/s00170-011-3778-4

    Article  Google Scholar 

  60. Rathod V, Doloi B, Bhattacharyya B (2015) Experimental investigations into machining accuracy and surface roughness of microgrooves fabricated by electrochemical micromachining. Proceedings of IMechE, Part B: Journal of Engineering Manufacture 229:1781–1802. https://doi.org/10.1177/0954405414539486

    Article  CAS  Google Scholar 

  61. Bhattacharyya B (2015) Electro chemical micromachining for nanofabrication. MEMS and nanotechnology William Andrew Oxford UK https://doi.org/10.1016/C2014-0-00027-5

  62. Sarkar BR, Doloi B, Bhattacharyya B (2006) Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. Int J Adv Manuf Technol 28:873–881. https://doi.org/10.1007/s00170-004-2448-1

    Article  Google Scholar 

  63. Tandon S, Jain VK, Kumar P, Rajurkar KP (1990) Experimental investigations into electrochemical spark machining of composites. Precis Eng 12(4):227–238

    Article  Google Scholar 

  64. Paul L, Hiremath SS (2013) Response surface modeling of micro holes in electrochemical discharge machining process. Procedia Engineering 64:1395–1404. https://doi.org/10.1016/j.proeng.2013.09.221

    Article  CAS  Google Scholar 

  65. Rao RV (2016) Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems. Decision Science Letters 5:1–30. https://doi.org/10.5267/j.dsl.2015.9.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Prakash.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, J., Gopalakannan, S. Teaching—Learning-Based Optimization Coupled with Response Surface Methodology for Micro Electrochemical Machining of ALUMINIUM NANOCOMPOSITE. Silicon 13, 409–432 (2021). https://doi.org/10.1007/s12633-020-00434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00434-0

Keywords

Navigation