Skip to main content
Log in

Compact Modeling of Graded N-Channel Independent Gate FET with Underlaps, Spacer and S/D Straggle for Low Power Application

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper presents an analytical modeling of a separated gate underlap graded N-channel FET to assess the short-channel effects. A 2D modeling scheme is employed to derive its surface potential, threshold voltage, subthreshold current and DIBL. The proposed structure includes four regions, and the potential function for each region is developed from solution of Poisson’s Equation using appropriate approximations. In order to estimate surface potential of the device, parabolic approximation scheme with geometrical approach is used in channel region to cater the influence of independently biased gates, while in source/drain underlap regions, conformal mapping is employed for the fringing field estimation. The study suggests that the independent gate bias, channel doping concentrations, spacer and other device parameters viz. underlap length, gate work function, gate oxide thickness etc. are efficacious in modulating the threshold voltage, subthreshold current and DIBL. The analytical results are compared with those obtained from TCAD device simulator, and found to match very closely. Moreover, the analytical solutions also follow the similar nature of variations as appeared in other experimental reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kedzierski J, Ieong M, Nowak E, Kanarsky TS, Zhang Y, Roy R, Boyd D, Fried D, Wong H-SP (2003) Extension and source/drain design for high-performance finFET devices. IEEE Trans Electron Devices 50(4):952–958. https://doi.org/10.1109/TED.2003.811412

    Article  CAS  Google Scholar 

  2. Fossum JG, Chowdhury JG, Trivedi VP, King VP, Choi Y-K, An J, Yu B (2003) Physical insights on design and modeling of nanoscale FinFETs. In: IEEE Int Tech Dig Electron Devices Meeting (IEDM), pp 29.1.1-29.1.4. https://doi.org/10.1109/IEDM.2003.1269371

  3. Singh R, Aditya K, Parihar SS, Chauhan YS, Vega R, Hook TB, Dixit A (2018) Evaluation of 10-nm Bulk finFET RF performance—conventional versus NC-finFET. Electron Devices Letter 36(8):1246–1249. https://doi.org/10.1109/LED.2018.2846

    Article  Google Scholar 

  4. Datta A, Goel A, Cakici RT, Mahmoodi H, Lekshmanan D, Roy K (2007) Modeling and circuit synthesis for independently controlled double gate finFET devices. IEEE Trans Electron Devices 26(11):1957–1966. https://doi.org/10.1109/TCAD.2007.896320

    Article  Google Scholar 

  5. Cakici T, Mahmoodi H, Mukhopadhyay S, Roy K (2005) Independent gate skewed logic in double gate SOI technology. In: Proc IEEE Int SOI Conf, pp 83–84. https://doi.org/10.1109/SOI.2005.1563543

  6. Wang T, Cui X, Ni Y, Yu D, Cui X (2018) Evaluation of dynamic-adjusting threshold-voltage scheme for low-power finFET circuits. IEEE Trans VLSI Syst 26(10):1922–1929. https://doi.org/10.1109/TVLSI.2018.2842067

    Article  Google Scholar 

  7. Possani VN, Reis AI, Ribas RP, Marques FS, da Rosa LS (2017) Transistor count optimization in IG finFET network design. IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems 36(9):1483–1496. https://doi.org/10.1109/TCAD.2016.2629451

    Article  Google Scholar 

  8. Bansal A, Roy K (2007) Analytical subthreshold potential distribution model for gate underlap Double-Gate MOS transistor. IEEE Trans Electron Devices 54(7):1793–1798. https://doi.org/10.1109/TED.2007.898042

    Article  Google Scholar 

  9. Vaddi R, Agarwal RP, Dasgupta S (2012) Compact modeling of a generic Double-Gate MOSFET with Gate–S/D underlap for subthreshold operation. IEEE Trans Electron Devices 59(10):2846–2849. https://doi.org/10.1109/TED.2012.2208464

    Article  Google Scholar 

  10. Kuo JB, Sun EC (2004) A compact threshold voltage model for gate misalignment effect of DG FD SOI nMOS devices considering fringing electric field effects. IEEE Trans Electron Devices 51(4):587–596

    Article  Google Scholar 

  11. Trivedi V, Fossum JG, Chowdhury MM (2005) Nanoscale finFETs with gate-source/drain underlap. IEEE Trans Electron Devices 52(1):56–62. https://doi.org/10.1109/TED.2004.841333

    Article  Google Scholar 

  12. Bansal A, Paul BC, Roy K (2004) Impact of gate underlap on gate capacitance and gate tunnelling current in 16 nm DGMOS devices. Proc IEEE SOI Conf, pp 94–95. https://doi.org/10.1109/SOI.2004.1391570

  13. Tanaka K, Takeuchi K, Hane M (2005) Practical finFET design considering GIDL for LSTP (low standby power) devices. IEDM Tech Dig, pp 980–983. https://doi.org/10.1109/IEDM.2005.1609526

  14. Shenoy RS, Saraswat KC (2003) Optimization of extrinsic source/drain resistance in ultrathin body double-gate FETs. IEEE Trans Nanotechnol 2(4):265–270. https://doi.org/10.1109/TNANO.2003.820780

    Article  Google Scholar 

  15. Magnone P, Crupi F, Giusi G, Pace C, Simoen E, Claeys C, Pantisano L, Maji D, Ramgopal Rao V, Srinivasan P (2009) 1/F noise in drain and gate current of MOSFETswith high-k gate stacks. IEEE Trans Device Mater Reliab 9(2):180–189. https://doi.org/10.1109/TDMR.2009.2020406

    Article  CAS  Google Scholar 

  16. Chen X, Ouyang QC, Wang G, Banerjee SK (2002) Improved hot-carrier and short-channel performance in vertical nMOSFETs with graded channel doping. IEEE Trans Electron Devices 49(11):1962–1968. https://doi.org/10.1109/TED.2002.804697

    Article  CAS  Google Scholar 

  17. Agrawal B, De VK, Meindl JD (1996) Device parameter optimization for reduced short-channel effects in retrograde doping MOSFETs. IEEE Trans Electron Devices 43(2):365–368. https://doi.org/10.1109/16.481743

    Article  Google Scholar 

  18. Yu B, Wann CHJ, Nowak ED, Noda K, Hu C (1997) Short-channel effect improved by lateral channel engineering in deep-submicronmeter MOSFETs. IEEE Trans Electron Devices 44(4):627–634. https://doi.org/10.1109/16.563368

    Article  CAS  Google Scholar 

  19. Cheng B, Inani A, Rao R, Woo JCS (1999) Channel engineering for high-speed sub-1.0-V power supply deep submicron CMOS. Symp VLSI Technol, pp 69–70. https://doi.org/10.1109/VLSIT.1999.799344

  20. Chattopadhyay A, Dutta A, Kundu A, Sarkar CK (2016) Influence on the analog/RF Performance in Graded Channel Gate Stack DG-MOSFETs. ICDCS, pp 167–169. https://doi.org/10.1109/ICDCSyst.2016.7570653

  21. Chattopadhyay A, Das R, Dasgupta A, Kundu A, Sarkar CK (2017) Effect of channel engineering on analog/RF performance of underlapped gatestack DG-MOSFET in sub-20nm regime. DevIC, pp 299–302. https://doi.org/10.1109/DEVIC.2017.8073956

  22. Sharma RK, Gupta M, Gupta RS (2011) TCAD Assessment of device design technologies for enhanced performance of nanoscale DG MOSFET. IEEE Trans Electron Devices 58(9):2936–2943. https://doi.org/10.1109/TED.2011.2160065

    Article  CAS  Google Scholar 

  23. Chattopadhyay A, Das R, Dasgupta A, Kundu A, Sarkar CK (2017) A linearity based comparison between symmetric and asymmetric lateral diffusion for a 22 nm Underlapped DG-MOSFET. Superlattices and Microstructures, pp 69–82. https://doi.org/10.1016/j.spmi.2017.03.056

  24. Koley K, Dutta A, Saha SK, Sarkar CK (2015) Analysis of high-k spacer asymmetric Underlap DG-MOSFET for SOC application. IEEE Trans Electron Devices 62(6):1733–1738. https://doi.org/10.1109/TED.2015.2397699

    Article  Google Scholar 

  25. Fossum JG, Zhou Z, Mathew L, Nguyen B-Y (2010) SOI Versus bulk-silicon nanoscale finFETs. Solid-State Electron 54(2):86–89. https://doi.org/10.1016/j.sse.2009.12.002

    Article  CAS  Google Scholar 

  26. Choi JH, Kim TK, Moon JM, Yoon YG, Hwang BW, Kim DH, Lee SH (2014) Origin of device performance enhancement of junctionless accumulation-mode (JAM) bulk finFETs with high- gate spacers. IEEE Electron Device Lett 35(12):1182–1184. https://doi.org/10.1109/LED.2014.2364093

    Article  CAS  Google Scholar 

  27. Gundapaneni S, Ganguly S, Kottantharayil A (2011) Enhanced electrostatic integrity of short-channel junctionless transistors with high-k spacers. IEEE Electron Dev Lett 32(10):1325–1327. https://doi.org/10.1109/LED.2011.2162309

    Article  CAS  Google Scholar 

  28. Chattopadhyay A, Dasgupta A, Das R, Kundu A, Sarkar CK (2017) Effect of spacer dielectric engineering on Asymmetric Source Underlapped Double Gate MOSFET using Gate Stack. Superlattices and Microstructures, pp 87–95. https://doi.org/10.1016/j.spmi.2016.11.024

  29. Sachid AB, Chen M-C, Hu C (2016) FinFET with high- spacers for improved drive current. IEEE Trans Electron Devices 37(7):835–838. https://doi.org/10.1109/LED.2016.2572664

    Article  CAS  Google Scholar 

  30. Sachid AB, Chen MC, Hu C (2017) Bulk finFET with low- spacers for continued scaling. IEEE Trans Electron Devices 67(4):1861–1864. https://doi.org/10.1109/TED.2017.2664798

    Article  Google Scholar 

  31. Han JW, Kim CJ, Choi YK (2008) Universal potential model in tied and separated double-gate MOSFETs with consideration of symmetric and asymmetric structure. IEEE Trans Electron Devices 55(6):1472–1479. https://doi.org/10.1109/TED.2008.922492

    Article  CAS  Google Scholar 

  32. Suzuki K, Sugii T (1995) Analytical model for n + -p + double-gate SOI MOSFET’s. IEEE Trans Electron Devices 42(11):1940–1948

    Article  CAS  Google Scholar 

  33. Young KK (Feb. 1989) Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans Electron Devices 36(2):399–402. https://doi.org/10.1109/16.19942

    Article  Google Scholar 

  34. Dubey SK, Tiwari PK, Jit S (2010) A two-dimensional model for the potential distribution and threshold voltage of short-channel double-gate metal-oxide-semiconductor field-effect transistors with a vertical Gaussian-like doping profile. J Appl Phys 108(3):034518–1-034518-7. https://doi.org/10.1063/1.3460796

    Article  CAS  Google Scholar 

  35. Goel E, Kumar S, Singh K, Singh B, Kumar M, Jit S (2016) 2-D analytical modeling of threshold voltage for graded-channel dual-material double-gate MOSFETs. IEEE Trans Electron Devices 63 (3):966–973. https://doi.org/10.1109/TED.2016.2520096

    Article  CAS  Google Scholar 

  36. Jaiswal N, Kranti A (2018) A model for Gate-Underlap-Dependent short channel effects in junctionless MOSFET. IEEE Trans Electron Devices 65(3):881–887. https://doi.org/10.1109/TED.2018.2796602

    Article  CAS  Google Scholar 

  37. Liang X, Taur Y (2004) A 2-D analytical solution for SCEs in DG MOSFETs. IEEE Trans Electron Devices 51(9):1385–1391. https://doi.org/10.1109/TED.2004.832707

    Article  CAS  Google Scholar 

  38. Mollah SA (2012) Introduction to numerical analysis

  39. Holtij T, Graef M, Hain FM, Kloes A, Iñíguez B (2014) Compact model for short-channel junctionless accumulation mode double gate MOSFETs. IEEE Trans Electron Devices 61(2):288–299. https://doi.org/10.1109/TED.2013.2281615

    Article  Google Scholar 

  40. Sentaurus Device User Guide, Synopsys, Inc., Mountain View, CA, USA, 2010

  41. International Technology Roadmap for Semiconductor, 2012

  42. Arora ND, Gildenblat GS (Feb. 1987) A Semi-Empirical model of the MOSFET inversion layer mobility for Low-Temperature operation. IEEE Trans Electron Devices 34(1):89–93. https://doi.org/10.1109/T-ED.1987.22889

    Article  Google Scholar 

  43. Lombardi C, Manzini S, Saporito A, Vanzi M (1988) A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans CAD 7(11):89–93. https://doi.org/10.1109/43.9186

    Article  Google Scholar 

  44. Ferain I, Colinge CA, Colinge J-P (2011) Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479:310–316. https://doi.org/10.1038/nature10676

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankush Chattopadhyay.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ \begin{array}{@{}rcl@{}} \alpha_{23}&=&\frac{1}{\gamma_{1}} \Big [\frac{qNa_{1}}{\epsilon_{si}}-\alpha_{1}V^{\prime}_{bg}+{\upbeta}_{1}V_{fb,1} \Big ]; \ \alpha_{24}=\frac{{\upbeta}_{1}}{\gamma_{1}}\\ \alpha_{25}&=& \frac{1}{\gamma_{1}} \Big [\frac{qNa_{2}}{\epsilon_{si}}-\alpha_{1}V^{\prime}_{bg}+{\upbeta}_{1}V_{fb,2} \Big ] \\ \alpha_{26}&=& \frac{V_{bi,s0}+(1-\alpha_{3})V_{fb,1}+\alpha_{52} + (\alpha_{3}-\alpha_{6}\alpha_{13})\alpha_{23} \lambda^{2}}{(\alpha_{5} \alpha_{14}- \alpha_{6} \alpha_{13})} \\ \alpha_{27}&=& \frac{1-\alpha_{3}+(\alpha_{3} - \alpha_{6} \alpha_{13}) \alpha_{24} \lambda^{2} + \alpha_{53}}{(\alpha_{5} \alpha_{14} - \alpha_{6} \alpha_{13})} \\ \alpha_{28}&=&\frac{\lambda^{2}(\alpha_{5} \alpha_{14}-\alpha_{3})\alpha_{23}- \big \{ V_{bi,s0} - (1-\alpha_{3})(\alpha_{52}-V_{fb,1}) \big \} }{(\alpha_{5} \alpha_{14} - \alpha_{6} \alpha_{13})} \\ \alpha_{29}&=&\frac{\alpha_{24}(\alpha_{14}\alpha_{5}-\alpha_{3}) \lambda^{2}+(1-\alpha_{3})(\alpha_{53}-1)}{\alpha_{5} \alpha_{14} - \alpha_{6} \alpha_{13}} \\ \alpha_{30}&=&\frac{ V_{bi_{,d1}} - (1-\alpha_{9})(\alpha_{54} - V_{fb,1})+\alpha_{25} (\alpha_{9} - \alpha_{12}\alpha_{13}) \lambda^{2}}{(\alpha_{11}\alpha_{14}-\alpha_{12}\alpha_{13})} \\ \alpha_{31}&=&\frac{(1-\alpha_{9})(1-\alpha_{55})+ \alpha_{24} (\alpha_{9} - \alpha_{13} \alpha_{12}) \lambda^{2}}{\alpha_{11} \alpha_{14} - \alpha_{12} \alpha_{13}} \\ \alpha_{32}&= &\frac{\lambda^{2}(\alpha_{11}\alpha_{14}-\alpha_{9})\alpha_{25}-\big \{V_{bi,d_{1}} - (1-\alpha_{9})(\alpha_{54}-V_{fb,1}) \big \}}{(\alpha_{11} \alpha_{14} - \alpha_{12} \alpha_{13})} \\ \alpha_{33}&=&\frac{\alpha_{24}(\alpha_{11}\alpha_{14}-\alpha_{9}) \lambda^{2}+(1-\alpha_{9})(\alpha_{55}-1)}{\alpha_{11} \alpha_{14} - \alpha_{12} \alpha_{13}} \\ \alpha_{34}&=&\frac{\alpha_{30} + \alpha_{28} - \alpha_{32} - \alpha_{26}}{\alpha_{22} + \alpha_{20} - \alpha_{18} - \alpha_{16}}; \alpha_{35}=\frac{\alpha_{31} + \alpha_{29} - \alpha_{33} - \alpha_{27}}{\alpha_{22} + \alpha_{20} - \alpha_{18} - \alpha_{16}} \\ \alpha_{36}&=&\Big \{\frac{\alpha_{14} \big \{ V_{bi_{,s0}} - (1-\alpha_{3})(\alpha_{52} - V_{fb,1})+\alpha_{3}\alpha_{23}\lambda^{2} \big \}}{\alpha_{5}\alpha_{14}-\alpha_{6}\alpha_{13}} \\&& -\frac{\alpha_{6} (\alpha_{34}+ \alpha_{22}\lambda^{2})}{\alpha_{5}\alpha_{14}-\alpha_{6}\alpha_{13}} \Big \}; \ \ \gamma_{3}=\frac{1}{\alpha^{\prime}_{2}}\bigg[\frac{qNa_{2}}{\epsilon_{si}}+\frac{2K_{1}}{t^{2}_{si}}\bigg]\Bigg(\frac{t_{oxf}}{\eta_{2}}\Bigg)^{2} \\ \alpha_{37}&=&\frac{\alpha_{14} (1-\alpha_{3} + \alpha_{3}\alpha_{24}\lambda^{2})- \alpha_{6} (\alpha_{35}+ \alpha_{24}\lambda^{2})-\alpha_{14}(1-\alpha_{13})\alpha_{53}}{\alpha_{5}\alpha_{14}-\alpha_{6}\alpha_{13}} \\ \alpha_{38}&=&\frac{\alpha_{34} + \alpha_{23} \lambda^{2} - \alpha_{13} \alpha_{36}}{\alpha_{14}}; \ \ \alpha_{39}=\frac{\alpha_{35} + \alpha_{24} \lambda^{2} - \alpha_{13} \alpha_{37}}{\alpha_{14}} \\ \alpha_{40}&=&4\alpha_{37} \alpha_{39}-\alpha^{2}_{24} \lambda^{4}; \alpha_{41}=4\alpha_{36} \alpha_{39}+4\alpha_{37} \alpha_{38}-2\alpha_{23} \alpha_{24} {\lambda^{4}_{1}}- \\ && 4\phi_{F_{Si,1}} \alpha_{24} \lambda^{2}; \alpha_{42}=4\alpha_{36} \alpha_{38}-4\phi^{2}_{F_{Si,1}}-\alpha^{2}_{23}\lambda^{4}-4\phi_{F_{Si,1}}\alpha_{23}\lambda^{2} \\ \alpha_{43}&=&\alpha_{36} \alpha_{7} + \alpha_{38} \alpha_{8} - \alpha_{23} \lambda^{2} + V_{fg,1} - \alpha_{52} \\ \alpha_{44}&=&1 + \alpha_{37} \alpha_{7} + \alpha_{39} \alpha_{8} -\alpha_{24} {\lambda^{2}_{1}} -\alpha_{53} \\ \alpha_{45}&=&\frac{t_{oxf}}{\eta_{1} \lambda} \Big \{ \alpha_{38} \alpha_{8} -\alpha_{36} \alpha_{7} \Big \} ; \ \ \alpha_{46}=\frac{t_{oxf}}{\eta_{1} \lambda} \Big \{ \alpha_{37} \alpha_{7} - \alpha_{39} \alpha_{8} \Big \} \end{array} $$
$$ \begin{array}{@{}rcl@{}} \alpha_{47}&=&2\phi_{F_{Si,1}} + V_{fb,1} - \alpha_{43}/4 - \alpha_{52}; \ \ \alpha_{48}=\alpha_{44}/4 - 1 + \alpha_{53} \end{array} $$
(37a)
$$ \begin{array}{@{}rcl@{}} \eta_{1}&=&\frac{t_{oxf}}{L_{su}}sinh\bigg(cosh^{-1}(\frac{t_{oxf}+t_{g}}{t_{oxf}})\bigg)\\ \eta_{2}&=&\frac{t_{oxf}}{L_{du}}sinh\bigg(cosh^{-1}(\frac{t_{oxf}+t_{g}}{t_{oxf}})\bigg) \end{array} $$
(37b)

Appendix B

The Vfg dependent coeffecients are expressed as,

$$ \begin{array}{@{}rcl@{}} \delta_{1}&=&\alpha_{23}-\alpha_{24}V_{fg}; \delta_{2}=\alpha_{25}-\alpha_{24}V_{fg}; \alpha_{15}=\alpha_{26}-\alpha_{27}V_{fg} \\ \alpha_{17}&=&\alpha_{28}-\alpha_{29}V_{fg}; \alpha_{19}=\alpha_{30}-\alpha_{31}V_{fg}; \alpha_{21}=\alpha_{32}-\alpha_{33}V_{fg} \\ V_{m}&=&\alpha_{34}-\alpha_{35}V_{fg}; A_{1}=\alpha_{36}-\alpha_{37}V_{fg}; B_{1}=\alpha_{38}-\alpha_{39}V_{fg} \end{array} $$
(3)

The expressions of αi; i = 23 to 39 are given in Appendix A. We finally get the following equation of Vfg, \(\alpha _{40}V^{2}_{fg}-\alpha _{41}V_{fg}+\alpha _{42}=0\) and its solution as,

$$ V_{fg}=V_{th1,fg}=\frac{\alpha_{41} \pm \sqrt {\alpha^{2}_{41}-4 \alpha_{40} \alpha_{42}}}{2 \alpha_{40}} $$
(38)

Appendix C

The Vfg dependent coeffecients are expressed as,

$$ K_{1}=\alpha_{56}-\alpha_{57}V_{fg};\gamma_{2}=\alpha_{52}-\alpha_{53}V_{fg};\gamma_{3}=\alpha_{54}-\alpha_{55}V_{fg} $$

The quadratic equation of Vfg is expressed as, \(\alpha _{49}V^{2}_{fg}+ \ \ \alpha _{50}V_{fg}+\alpha _{51}=0\). The threshold voltage is obtained as,

$$ \begin{array}{@{}rcl@{}} &&V_{fg}=V_{th2,fg}=\frac{-\alpha_{50} \pm \sqrt {\alpha^{2}_{50}-4 \alpha_{49} \alpha_{51}}}{2 \alpha_{49}} \ \ \ with,\\ &&\alpha_{49} = \frac{9}{4} \alpha^{2}_{44} + \frac{3}{\alpha_{2}} \alpha^{2}_{46} - \alpha^{2}_{48}; \ \ \alpha_{50} = -\frac{9 \alpha_{43} \alpha_{44}}{2} + \frac{6 \alpha_{45} \alpha_{46}}{\alpha_{2}} - 2 \alpha_{47} \alpha_{48}\\ &&\alpha_{51} = \frac{9}{4} \alpha^{2}_{43} + \frac{3}{\alpha_{2}} \alpha^{2}_{45} - \alpha^{2}_{47}; \ \ \alpha_{52} = \frac{t^{2}_{oxf}}{\alpha_{2} {\eta^{2}_{1}}} \bigg (\frac{qNa_{1}}{\epsilon_{Si}}+\frac{2\alpha_{56}}{t^{2}_{Si}} \bigg )\\ &&\alpha_{53} = \frac{2 t^{2}_{oxf} \alpha_{57}}{\alpha_{2} {\eta^{2}_{1}} t^{2}_{Si}}; \ \ \alpha_{54} = \frac{t^{2}_{oxf}}{\alpha^{\prime}_{2} {\eta^{2}_{2}}} \bigg (\frac{qNa_{2}}{\epsilon_{Si}}+\frac{2\alpha_{56}}{t^{2}_{Si}} \bigg ); \ \ \alpha_{55} = \frac{2 t^{2}_{oxf} \alpha_{57}}{\alpha^{\prime}_{2} {\eta^{2}_{2}} t^{2}_{Si}}\\ &&\alpha_{56}=\alpha_{57}(-V_{fb,1}-V^{\prime}_{bg}); \ \ \alpha_{57}=\frac{\epsilon_{ox}t_{si}}{\epsilon_{si}t_{oxf}+\epsilon_{si}t_{oxb}+\epsilon_{ox}t_{si}} \end{array} $$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, A., Bose, C. & Sarkar, C.K. Compact Modeling of Graded N-Channel Independent Gate FET with Underlaps, Spacer and S/D Straggle for Low Power Application. Silicon 13, 375–387 (2021). https://doi.org/10.1007/s12633-020-00424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00424-2

Keywords

Navigation