Skip to main content
Log in

Aluminum Nanoparticles Passivation of Multi-Crystalline Silicon Nanostructure for Solar Cells Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, we demonstrated that aluminum films deposited on the front surface of multi-crystalline silicon (mc-Si) provide excellent surface passivation and high electronic quality of such materials. A thickness of about 8 μm of aluminum films was deposited by a screen-printed on the front surface of the mc-Si annealed for 20 min at 500 °C. The immersion of multi-crystalline silicon in HF/H2O2/HNO3 after the film deposition is the key factor in achieving the high electronic quality front surface of mc-Si nanostructures (mc-Si-NS). As a result, the total reflectivity drops to about 2% and a low surface recombination velocity of about 1.5 cm s−1 was obtained. These results indicate that multi-crystalline silicon surface passivation using the aluminum layer is a valuable process to improve the efficiency of the mc-Si-NS based solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostinelli G, Delabie A, Vitanov P, Alexieva Z, Dekkers HFW, De Wolf S, Beaucarne G (2006). Sol Energy Mater Sol Cells 90:3438–3443

    Article  CAS  Google Scholar 

  2. Hoex B, Schmidt J, Bock R, Altermatt PPMC, van de Sanden M, Kessels WMM (2007). Appl Phys Lett 91:112107

    Article  Google Scholar 

  3. Hoex B, Schmidt J, Pohl P, van de Sanden MCM, Kessels WMM (2008). J Appl Phys 104:044903

    Article  Google Scholar 

  4. Benick J, Richter A, Hermle M, Glunz SW (2009). Phys Status Solidi (RRL) 3:233–235

    Article  CAS  Google Scholar 

  5. Dingemans G, Seguin R, Engelhart P, van de Sanden MCM, Kessels WMM (2010). Phys Status Solidi (RRL) 4:10–12

    Article  CAS  Google Scholar 

  6. El-Amin AA, Zaki AA (2017). Silicon 9:53–58

    Article  CAS  Google Scholar 

  7. Chander S, Purohit A, Sharma A, Nehra SP, Dhaka MS (2015). Energy Rep 1:175–180

    Article  Google Scholar 

  8. Chander S, Purohit A, Sharma A, Arvind, Nehra SP, Dhaka MS (2015). Energy Rep 1:104–109

    Article  Google Scholar 

  9. Kaminski A, Vandelle B, Favea A, Boyeaux JP, Nam LQ, Monna R, Sarti D, Laugier A (2002). Sol Energy Mater Sol Cells 72:373–379

    Article  CAS  Google Scholar 

  10. L.T. Canham. 1st ed, Inspec, London (1997) p. 23

  11. Rabha MB, Hajji M, Mohamed SB, Hajjaji A, Gaidi M, Ezzaouia H, Bessais B (2012). Eur Phys J Appl Phys 57:21301

    Article  Google Scholar 

  12. Guerrero-Lemus R, Hernández-Rodríguez C, Ben-Hander F, Martínez-Duart JM (2002). Sol Energy Mater Sol Cells 72:495–501

    Article  CAS  Google Scholar 

  13. Khezami, Jemai AB, Alhathlool R, Rabha MB (2016). Sol Energy 129:38–44

    Article  CAS  Google Scholar 

  14. Bastide S, Albu-Yaron A, Strehlke S, Levy-Clement C (1999). Sol Energy Mater Sol Cells 57:393–417

    Article  CAS  Google Scholar 

  15. Faltakh H, Bourguiga R, Rabha MB, Bessais B (2012). Superlattice Microst 72:283–295

    Article  Google Scholar 

  16. Rabha MB, Mohamed SB, Dimassi W, Gaidi M, Ezzaouia H, Bessais B (2011). Phys Status Solidi C 8:883–886

    Article  Google Scholar 

  17. Khezami L, Al Megbel AO, Jemai AB, Rabha MB (2015). Appl Surf Sci 353:106–111

    Article  CAS  Google Scholar 

  18. Harbeke G, Jastrzebski L (1990). J Electrochem Soc 137:696–699

    Article  CAS  Google Scholar 

  19. Ben Rabha M, Salem M, El Khakani MA, Bessais B, Gaidi M (2013). Mater Sci Eng B 178:695–697

    Article  CAS  Google Scholar 

  20. Cuevas A, Mcdonald D (2004). Sol Energy 76:255–262

    Article  CAS  Google Scholar 

  21. O. Porre ; S. Martinuzzi ; M. Pasquinelli ; I. Perichaud ; N. Gay.Published in: conference record of the twenty fifth IEEE photovoltaic specialists conference – 1996

  22. Harraz FA, Sakka T, Ogata YH (2003). Phys Status Solidi (a) 197:51–56

    Article  CAS  Google Scholar 

  23. Rahmani M, Moadhen A, Zaibi M-A, Elhouichet H, Oueslati M (2008). J Lumin 128:1763–1766

    Article  CAS  Google Scholar 

  24. Arnoldbik WM, Habraken FHPM (2007). Nucl Inst Methods Phys Res B 256:300

    Article  CAS  Google Scholar 

  25. Kanemitsu Y, Okamoto S (1997). Phys Rev B 56:1696

    Article  Google Scholar 

  26. Maruyama T, Ohtani S (1994). Appl Phys Lett 65:1346

    Article  CAS  Google Scholar 

  27. Kanemitsu Y, Futagi T, Matsumoto T, Mimura H (1994). Phys Rev B 49:14732

    Article  CAS  Google Scholar 

  28. Ben Rabha M, Dimassi W, Boua Icha M, Ezzaouia H, Bessais B (2009). Sol Energy 83:721–725

    Article  CAS  Google Scholar 

  29. Dimassi W, Boua Icha M, Kharroubi M, Lajnef M, Ezzaouia H, Bessa is B (2008). Sol Energy Mater Sol Cells 92:1421–1424

    Article  CAS  Google Scholar 

  30. Dimassi W, Derbali L, Bouaicha M, Bessais B, Ezzaouia H (2011). Sol Energy 85:350–355

    Article  CAS  Google Scholar 

  31. Chander S, Purohit A, Nehra A, Nehra SP, Dhaka MS (2015). International Journal of Renewable Energy Research (IJRER) 5:41–44

    Google Scholar 

  32. Rabha MB, Mohamed SB, Dimassi W, Gaidi M, Ezzaouia H, Bessais B (2012). Physica Satuts Solidi 8:887–890

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No (RG-1439-006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Jemai or M. Ben Rabha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jemai, A.B., Mannai, A., Khezami, L. et al. Aluminum Nanoparticles Passivation of Multi-Crystalline Silicon Nanostructure for Solar Cells Applications. Silicon 12, 2755–2760 (2020). https://doi.org/10.1007/s12633-019-00368-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00368-2

Keywords

Navigation