Skip to main content
Log in

Dielectric Modulated Schottky Barrier TFET for the Application as Label-Free Biosensor

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper reported a dielectric modulated (DM) Schottky Barrier (SB) TFET (DM SB TFET) as label free biosensor applications. In a proposed device, we have created a nanogap cavity within the gate dielectric near the source end for sensing biomolecules. Therefore, the modulation of the SB width at the source end occurs due to presence of biomolecules in the form of different dielectric material used to fill the nanogap cavity. Hence, the current flow from source to drain is highly sensitive to the change in properties of dielectric materials. Here, we have investigated the performance of the proposed device in terms of its sensing capability by variation in dielectric constant and, charge density. Also, the performance of the device is observed for different cavity length and, thickness for different drain and source bias. Results show high sensitivity in terms of change in drive current of the device for the variation in the dielectric constant and charge density. Simulations have been performed by the two dimensional SILVACO ATLAS device simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergveld P (1986) The development and application of FET-based biosensors. Biosensors 2(1):15–33. https://doi.org/10.1016/0265-928X(86)85010-6

    Article  CAS  PubMed  Google Scholar 

  2. Chen X et al (Nov. 2010) Electrical nanogap devices for biosensing. Mater Today 13(11):28–41

    Article  CAS  Google Scholar 

  3. Kim C-H, Jung C, Park HG, Choi Y-K (Jun. 2008) Novel dielectric modulated field-effect transistor for label-free DNA detection. Biochip J 2(2):127–134

    Google Scholar 

  4. Im X-J, Huang BG, Choi Y-K (2007) A dielectric-modulated field-effect transistor for biosensing. Nature Nanotechnol 2(7):430–434

    Article  CAS  Google Scholar 

  5. Bandiziol A, Palestri P, Pittino F, Esseni D, Selmi L (Oct. 2015) A TCAD based methodology to model the site-binding charge at ISFET/electrolyte interfaces. IEEE Trans Electron Devices 62(10):3379–3386

    Article  CAS  Google Scholar 

  6. Sarkar D, Banerjee K (2012) Fundamental limitations of conventional-FET Biosensors: quantum-mechanical-tunneling to the rescue, IEEE Device Research Conference (DRC), pp 83–84

  7. Narang R, Reddy KVS, Saxena M, Gupta RS, Gupta M (Oct. 2012) A dielectric-modulated tunnel-FET-based biosensor for label-free detection: analytical modeling study and sensitivity analysis. IEEE Trans Electron Devices 59(10):2809–2817

    Article  Google Scholar 

  8. Venkatesh P, Nigam K, Pandey S, Sharma D, Kondekar PN (Sept. 2017) A dielectrically modulated electrically doped tunnel FET for application of label free biosensor. Superlattice Microst 109:470–479

    Article  CAS  Google Scholar 

  9. Kannan N, Kumar MJ (Dec. 2013) Dielectric-modulated impact-ionization MOS transistor as a label-free biosensor. IEEE Electron Device Lett 34(12):1575–1577

    Article  CAS  Google Scholar 

  10. Singh D, Pandey S, Nigam K, Sharma D, Yadav DS, Kondekar P (Jan. 2016) A charge-plasma-based dielectric-modulated Junctionless TFET for biosensor label-free detection. IEEE Trans Electron Devices 64(1):271–278

    Article  Google Scholar 

  11. Sarkar D, Gossner H, Hansch W, Banerjee K (2013) Impact-ionization field-effecttransistor based biosensors for ultra-sensitive detection of biomolecules. Appl Phys Lett 102:203110

    Article  Google Scholar 

  12. Lee C-W, Ferain I, Afzalian A, Yan R, Akhavan ND, Razavi P, Jean-Pierre LM (2010) Performance estimation of junctionless multigate transistors. Solid State Elect 54(2):97–103

    Article  Google Scholar 

  13. Jhaveri R, Nagavarapu V, Woo JCS (Jan. 2009) Asymmetric Schottky tunneling source SOI MOSFET design for mixed-mode applications. IEEE Trans Electron Devices 56(1):93–99. https://doi.org/10.1109/TED.2008.2008161

    Article  CAS  Google Scholar 

  14. Larson JM, Snyder JP (May 2006) Overview and status of metal S/D Schottky-barrier MOSFET technology. IEEE Trans Electron Devices 53(5):1048–1058. https://doi.org/10.1109/TED.2006.871842

    Article  CAS  Google Scholar 

  15. Kale S, Kondekar PN (2015) Suppression of ambipolar leakage current in Schottky barrier MOSFET using gate engineering. Electron Lett 51(19):1536–1538. https://doi.org/10.1049/el.2015.0283

    Article  CAS  Google Scholar 

  16. Kale S, Kondekar PN (2015) Ambipolar leakage suppression in Ge n-channel Schottky barrier MOSFET. IETE J Res 61(4):323–328. https://doi.org/10.1080/03772063.2015.1021387

    Article  Google Scholar 

  17. Zhao QT, Rije E, Bruer U, Lenk S, Mantl S (Oct. 2004) Tuning of silicide Schottky barrier heights by segregation of sulfur atoms. Proc 7th Int Conf Solid-State Integr Circuits Technol:456–459

  18. ATLAS Device Simulation Software, Silvaco, Santa Clara, CA, USA, 2014

  19. Ieong M, Solomon PM, Laux SE, Wong H-SP, Chidambarrao D (1998) Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model. IEDM Tech Dig (Dec):733–736. https://doi.org/10.1109/IEDM.1998.746461

  20. Matsuzawa K, Uchida K, Nishiyama A (Jan. 2000) A unified simulation of Schottky and ohmic contacts. IEEE Trans Electron Devices 47(1):103–108. https://doi.org/10.1109/16.817574

    Article  CAS  Google Scholar 

  21. Kale S, Kondekar PN (Sep 2017) Design and investigation of dielectric engineered dopant segregated Schottky barrier MOSFET with NiSi source/drain. IEEE Trans Electron Devices 64(11):4400–4407

    Article  CAS  Google Scholar 

  22. Kale S, Kondekar PN (Dec. 2015) Design and investigation of double gate Schottky barrier MOSFET using gate engineering. IET Micro Nano Lett 10(12):707–711. https://doi.org/10.1049/mnl.2015.0046

    Article  CAS  Google Scholar 

  23. Kale S, Kondekar PN (Jan. 2016) Ferroelectric Schottky barrier tunnel FET with gate-drain underlap: proposal and investigation. Superlattice Microst 89:225–230. https://doi.org/10.1016/j.spmi.2015.11.019

    Article  CAS  Google Scholar 

  24. Neamen DA (2003) Semiconductor physics and devices.3rd edn. McGraw-Hill, New York

    Google Scholar 

  25. Sze SM, Ng KK (2007) Physics of semiconductor devices. Wiley, Hoboken

    Google Scholar 

  26. Kale S, Kondekar PN (Jun. 2014) Impact of underlap channel and body thickness on the performance of DG-MOSFET with Si3N4 spacer. Proc IEEE Int Conf Electron Devices Solid-State Circuits, Chengdu, China:1–2. https://doi.org/10.1109/EDSSC.2014.7061237

  27. Guin S, Chattopadhyay A, Karmakar A, Mallik A (Jul. 2014) Impact of a pocket doping on the device performance of a Schottky tunneling field effect transistor. IEEE Trans Electron Dev 61(7):2515–2522. https://doi.org/10.1109/TED.2014.2325068

    Article  CAS  Google Scholar 

  28. Kale S, Banchhor S, Kondekar PN (2015) Performance study of high-k gate and spacer dielectric dopant segregated Schottky barrier SOI MOSFET. In: 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, pp 1142–1145

    Google Scholar 

  29. Kumar P, Bhowmick B (Sep 2017) 2-D analytical modelling for electrostatic potential and threshold voltage of a dual work function gate Schottky barrier MOSFET. J Comput Electron 16(3):658–665

    Article  Google Scholar 

  30. Kumar P, Bhowmick B (May 2018) Scaling of dopant segregation Schottky barrier using metal strip buried oxide MOSFET and its comparison with conventional Device. Silicon 10(3):811–820

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kale.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latha, N.K.H., Kale, S. Dielectric Modulated Schottky Barrier TFET for the Application as Label-Free Biosensor. Silicon 12, 2673–2679 (2020). https://doi.org/10.1007/s12633-019-00363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00363-7

Keywords

Navigation