Skip to main content

Advertisement

Log in

Fabrication of Ceramic Hip Implant Composites: Influence of Silicon Nitride on Physical, Mechanical and Wear Properties

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study examined the effects of silicon nitride reinforcement on physical, mechanical and wear properties of different ceramic (zirconium oxide, magnesium oxide, chromium oxide and aluminum oxide) containing hip implant composites. The hip implant composites were produced using conventional mixing and spark plasma sintering methods by substituting aluminum oxide (68, 70.5, 73 and 75.5 wt.%) with silicon nitride (0, 2.5, 5 and 7.5 wt.%). Experimental results showed that silicon nitride content had significant effect on the evaluated physical, mechanical and wear properties. The density of the composites found to decrease whereas void content, Young’s modulus, hardness, wear resistance and fracture toughness first decreased (for 2.5 wt.%) and then increased with the increasing amount of silicon nitride content. The maximum hardness, Young’s modulus, wear resistance and fracture toughness values of 28.64 GPa, 280.18 GPa, 0.0076 mm3/million cycles and 11.84 MPa.m1/2, respectively were registered for 2.5 wt.% silicon nitride additions that also had the lowest void content (0.38%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roy T, Choudhury D, Ghosh S, Mamat AB, Murphy BP (2015) Improved friction and wear performance of micro dimpled ceramic-on-ceramic interface for hip joint arthroplasty. Ceram Int 41(1):681–690

    Article  CAS  Google Scholar 

  2. Perrichon A, Reynard B, Gremillard L, Chevalier J, Farizon F, Geringer J (2017) A testing protocol combining shocks, hydrothermal ageing and friction, applied to Zirconia Toughened Alumina (ZTA) hip implants. J Mech Behav Biomed Mater 65:600–608

    Article  CAS  Google Scholar 

  3. Sun D, Gu Y, Mei Q, Shao Y, Sun J, Fernandez J (2016) Effect of Heel Heights on Female Postural Control During Standing on a Dynamic Support Surface With Sinusoidal Oscillations. J Mot Behav 49(3):281–287

    Article  Google Scholar 

  4. Aherwar A, Bahraminasa M. Biocompatibility evaluation and corrosion resistance of tungsten added co-30Cr-4Mo-1Ni alloy, 2017

    Book  Google Scholar 

  5. Al-Hajjar M, Laurent G, Sabine B, Thomas O, Karen H, Daniel D, Jérôme C, Louise MJ (2019) Combined wear and ageing of ceramic-on-ceramic bearings in total hip replacement under edge loading conditions. J Mech Behav Biomed Mater 98:40–47

    Article  CAS  Google Scholar 

  6. Fekete G, Ming R, Rozs R, Singh T, Shao S (2019) Numerical Study on Medial and Lateral Wear Propagation in Total Knee Replacements Under Squat Movement. Journal of Medical Imaging and Health Informatics 9(3):573–578

    Article  Google Scholar 

  7. Shahrezaee M, Raz M, Shishehbor S, Moztarzadeh F, Baghbani F, Sadeghi A, Bajelani K, Tondnevis F (2018) Synthesis of Magnesium Doped Amorphous Calcium Phosphate as a Bioceramic for Biomedical Application: In Vitro Study. Silicon 10(3):1171–1179

    Article  CAS  Google Scholar 

  8. Farrag HA, El-Hendawy HH, El-Tablawy SY, Nora FH (2017) Silicon, pp 1–11

    Google Scholar 

  9. Mattei L, Puccio FD, Piccigallo B, Ciulli E (2011) Lubrication and wear modelling of artificial hip joints: A review. Tribol Int 44:532–549

    Article  Google Scholar 

  10. Delaunaya C, Petit I, Learmonth ID, Oger P, Vendittoli PA (2010) Metal-on-metal bearings total hip arthroplasty: The cobalt and chromium ions release concern. Orthopaedics & Traumatology: Surgery & Research 96(8):894–904

    Google Scholar 

  11. Kumar N, Arora NC, VSM DB (2014) Bearing surfaces in hip replacement – Evolution and likely future. Medical Journal Armed Forces India 70:371–376

    Article  Google Scholar 

  12. Boutin P, Christel P, Dorlot JM, Meunier A, de Roquancourt A, Blanquaert D, Herman S, Sedel L, Witvoet J (1988) The use of dense alumina-alumina ceramic combination in total hip replacement. J Biomed Mater Res 22(12):1203–1232

    Article  CAS  Google Scholar 

  13. Bal BS, Garino J, Ries M, Rahaman MN (2007) A Review of Ceramic Bearing Materials in Total Joint Arthroplasty. Hip International 17(1):21–30

    Article  CAS  Google Scholar 

  14. Marchi J, Silva CCG, Silva BB, Bressiani JC, Bressiani AHA (2009) Influence of additive system (Al2O3-RE2O3 , RE = Y, La, Nd, Dy, Yb) on microstructure and mechanical properties of silicon nitride-based ceramics. Mater Res 12(2):145–150

    Article  CAS  Google Scholar 

  15. Silva CCG, Higa OZ, Bressiani JC (2004) Cytotoxic evaluation of silicon nitride-based ceramics. Mater Sci Eng C 24(5):643–646

    Article  Google Scholar 

  16. Bal BS, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman AA, Rahaman MN (2009) Fabrication and Testing of Silicon Nitride Bearings in Total Hip Arthroplasty. J Arthroplast 24(1):110–116

    Article  Google Scholar 

  17. Mazzocchi M, Bellosi A (2008). The Journal of Materials Science: Materials in Medicine 19(8):2881–2887

    CAS  Google Scholar 

  18. Mazzocchi M, Bellosi A (2008) On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part II: chemical stability and wear resistance in body environment. The Journal of Materials Science: Materials in Medicine 19(8):2889–2901

    CAS  Google Scholar 

  19. Olofsson J, Grehk TM, Berlind T, Persson C, Jacobson S, Engqvist H (2012) Evaluation of silicon nitride as a wear resistant and resorbable alternative for total hip joint replacement. Biomatter 2(2):94–102

    Article  Google Scholar 

  20. Neumann A, Reske T, Held M, Jahnke K (2004) Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro. J Mater Sci Mater Med 15:1135–1140

    Article  CAS  Google Scholar 

  21. Das M, Bhimani K, Balla VK (2018) In vitro tribological and biocompatibility evaluation of sintered silicon nitride. Mater Lett 212:130–133

    Article  CAS  Google Scholar 

  22. McEntire BJ, Lakshminarayanan R, Thirugnanasambandam P, Sampson JS, Bock R, O’Brien D (2016). Bioceram Dev Appl 6(1):1–9

    Article  Google Scholar 

  23. Bal BS, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman AA, Rahaman MN (2008). J Biomed Mater Res B Appl Biomater 87(2):447–454

    Article  Google Scholar 

  24. Webster TJ, Patel AA, Rahaman MN, Bal BS (2012) Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants. Acta Biomater 8(12):4447–4454

    Article  CAS  Google Scholar 

  25. Gorth DJ, Puckett S, Ercan B, Webster TJ, Rahaman M, Bal BS (2012) Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium. Int J Nanomedicine 7:4829–4840

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Goswami C, Bhat IK, Bathula S, Patnaik A, Singh T (2019) Physico-mechanical and Surface Wear Assessment of Magnesium Oxide Filled Ceramic Composites for Hip Implant Application. Silicon 11(1):39–49

    Article  CAS  Google Scholar 

  27. Goswami C, Patnaik A, Bhat IK, Singh T (2019) Lecture notes in mechanical engineering, pp 21–27

    Google Scholar 

  28. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Material Research 7(6):1564–1583

    Article  CAS  Google Scholar 

  29. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements. J Am Ceram Soc 64(9):533–538

    Article  CAS  Google Scholar 

  30. International Standards (2012) ISO-6474-2(en). 2012–04

    Google Scholar 

  31. International Standards (2017) ISO-23317. First edition 06–15

    Google Scholar 

  32. Liu J, Yang Y, Hassanin H, Jumbu N, Deng S, Zuo Q, Jiang K (2016) Graphene–Alumina Nanocomposites with Improved Mechanical Properties for Biomedical Applications. ACS Appl Mater Interfaces 8(4):2607–2616

    Article  CAS  Google Scholar 

  33. Deeley GG, Herbert JM, Moore NC (1961). Powder Metall 8(4):145–151

    Article  CAS  Google Scholar 

  34. Lin JD, Duh JG (2002). Mater Chem Phys 78(1):253–261

    Article  CAS  Google Scholar 

  35. Szafran M, Bobryk E, Kukla D, Olszyna A (2000) Si3N4–Al2O3–TiC–Y2O3 composites intended for the edges of cutting tools. Ceram Int 26(6):579–582

    Article  CAS  Google Scholar 

  36. Zhang Y, Shu Y, Li W, Jiang S, Cao W, Wu Z, Wang K (2017) Effect of MgO doping on properties of low zirconium content Ce-TZP/Al2O3 as a joint replacement material. Ceram Int 43(2):2807–2814

    Article  CAS  Google Scholar 

  37. Gallo J, Goodman SB, Lostak J, Janout M (2012) Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: A review. Biomedical Papers 156(3):204–212

    Article  Google Scholar 

  38. Harding D, Blackburn D, Loesener G, Dixon R, Nguyen BK Wear rate comparison between polycrystalline diamond, CoCr, and UHMWPE in high wear environments. Proceedings of the international society for advanced spine surgery (ISASS) conference, Nevada, USA; 28-29 April 2011

  39. Uddin MS, Zhang LC (2013) Predicting the wear of hard-on-hard hip joint prostheses. Wear 301:192–200

    Article  CAS  Google Scholar 

  40. Amaral M, Maru MM, Rodrigues SP, Gouvea CP, Trommer RM, Oliveira FJ, Achete CA, Silva RF (2015) Extremely low wear rates in hip joint bearings coated with nanocrystalline diamond. Tribol Int 89:72–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Patnaik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, C., Bhat, I.K., Patnaik, A. et al. Fabrication of Ceramic Hip Implant Composites: Influence of Silicon Nitride on Physical, Mechanical and Wear Properties. Silicon 12, 1237–1245 (2020). https://doi.org/10.1007/s12633-019-00222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00222-5

Keywords

Navigation