Skip to main content

Advertisement

Log in

Experimental Study of CO2 and CH4 Permeability Values Through PebaxⓇ-1074/Silica Mixed Matrix Membranes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this research, mixed matrix membranes (MMMs) composed of poly(ether-block-amide) (PebaxⓇ-1074) and silica (SiO2) were prepared. Silica nanoparticles were distributed uniformly in the PebaxⓇ matrix without significant agglomerations and defects at the loadings of 0.0, 2.5, 5.0, 7.5 and 10 wt.%, confirming by field emission scanning electron microscopy (FESEM). Attenuated total reflection-Fourier transfer infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA) were also carried out to identify functional groups, crystalline structure and thermal stability of the prepared membranes, respectively. The incorporation of silica nanoparticles resulted in significant improvements in CO2 permeability and consequently ideal CO2/CH4 selectivity. At 10 wt.% loading of silica nanoparticles, the MMM exhibited the best separation performance with the CO2 permeability of 105.94 Barrer and CO2/CH4 selectivity of 26.09 which are significantly higher than the neat membrane properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azizi N, Zarei MM (2017) CO2/CH4 separation using prepared and characterized poly (ether-block-amide)/ZIF-8 mixed matrix membranes. Pet Sci Technol 35(9):869–874

    Article  CAS  Google Scholar 

  2. Azizi N, Hojjati MR, Zarei MM (2018) Study of CO2 and CH4 Permeation Properties through Prepared and Characterized Blended Pebax-2533/PEG-200 Membranes. Silicon 10 (4):1461–1467

    Article  CAS  Google Scholar 

  3. Goh P, Ismail A, Sanip S, Ng B, Aziz M (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol 81(3):243–264

    Article  CAS  Google Scholar 

  4. Jazebizadeh MH, Khazraei S (2017) Investigation of methane and carbon dioxide gases permeability through PEBAX/PEG/ZnO nanoparticle mixed matrix membrane. Silicon 9(5):775–784

    Article  CAS  Google Scholar 

  5. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Mem Sci 62(2):165–185

    Article  CAS  Google Scholar 

  6. Robeson LM (2008) The upper bound revisited. J Mem Sci 320(1):390–400

    Article  CAS  Google Scholar 

  7. Bondar V, Freeman B, Pinnau I (2000) Gas transport properties of poly (ether-b-amide) segmented block copolymers. J Polym Sci B Polym Phys 38(15):2051–2062

    Article  CAS  Google Scholar 

  8. Azizi N, Mahdavi HR, Isanejad M, Mohammadi T (2017) Effects of low and high molecular mass PEG incorporation into different types of poly (ether-b-amide) copolymers on the permeation properties of CO2 and CH4. J Polym Res 24(9):141

    Article  CAS  Google Scholar 

  9. Rezakazemi M, Amooghin AE, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861

    Article  CAS  Google Scholar 

  10. Wang M, Wang Z, Zhao S, Wang J, Wang S (2017) Recent advances on mixed matrix membranes for CO2 separation. Chin J Chem Eng 25 (11):1581–1597. https://doi.org/10.1016/j.cjche.2017.07.006

    Article  Google Scholar 

  11. George G, Bhoria N, AlHallaq S, Abdala A, Mittal V (2016) Polymer membranes for acid gas removal from natural gas. Sep Purif Technol 158:333–356. https://doi.org/10.1016/j.seppur.2015.12.033

    Article  CAS  Google Scholar 

  12. Azizi N, Mohammadi T, Behbahani RM (2017) Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. J Energy Chem 26(3):454–465. https://doi.org/10.1016/j.jechem.2016.11.018

    Article  Google Scholar 

  13. Azizi N, Mohammadi T, Behbahani RM (2017) Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. J Nat Gas Sci Eng 37:39–51. https://doi.org/10.1016/j.jngse.2016.11.038

    Article  CAS  Google Scholar 

  14. Azizi N, Mohammadi T, Mosayebi Behbahani R (2017) Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2 O 3 nanocomposite membranes for CO2/CH4 separation. Chem Eng Res Des 117:177–189. https://doi.org/10.1016/j.cherd.2016.10.018

    Article  CAS  Google Scholar 

  15. Murali RS, Kumar KP, Ismail A, Sridhar S (2014) Nanosilica and H-Mordenite incorporated Poly (ether-block-amide)-1657 membranes for gaseous separations. Microporous Mesoporous Mater 197:291–298

    Article  CAS  Google Scholar 

  16. Isanejad M, Mohammadi T (2018) Effect of amine modification on morphology and performance of poly (ether-block-amide)/fumed silica nanocomposite membranes for CO2/CH4 separation. Mater Chem Phys 205:303–314. https://doi.org/10.1016/j.matchemphys.2017.11.018

    Article  CAS  Google Scholar 

  17. Ghadimi A, Mohammadi T, Kasiri N (2014) A novel chemical surface modification for the fabrication of PEBA/SiO2 nanocomposite membranes to separate CO2 from syngas and natural gas streams. Ind Eng Chem Res 53(44):17476–17486

    Article  CAS  Google Scholar 

  18. Feng S, Ren J, Hua K, Li H, Ren X, Deng M (2013) Poly (amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation. Sep Purif Technol 116:25–34

    Article  CAS  Google Scholar 

  19. Meshkat S, Kaliaguine S, Rodrigue D (2018) Mixed matrix membranes based on amine and non-amine MIL-53 (Al) in PebaxⓇ MH-1657 for CO2 separation. Sep Purif Technol

  20. Jomekian A, Behbahani RM, Mohammadi T, Kargari A (2016) CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. J Nat Gas Sci Eng 31:562–574

    Article  CAS  Google Scholar 

  21. Ghadimi A, Mohammadi T, Kasiri N (2016) Mathematical modeling of the gas transport through PEBAX/(nonporous silica) nanocomposite membranes: Development based on Van Amerongen and Van Krevelen relations. Sep Purif Technol 170:280–293. https://doi.org/10.1016/j.seppur.2016.06.043

    Article  CAS  Google Scholar 

  22. Ataeivarjovi E, Tang Z, Chen J (2018) Study on CO2 Desorption Behavior of a PDMS-SiO2 Hybrid Membrane Applied in a Novel CO2 Capture Process. ACS applied materials & interfaces

  23. Azizi N, Arzani M, Mahdavi HR, Mohammadi T (2017) Synthesis and characterization of poly (ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation. Korean J Chem Eng 34(9):2459–2470

    Article  CAS  Google Scholar 

  24. Isanejad M, Azizi N, Mohammadi T (2017) Pebax membrane for CO2/CH4 separation: Effects of various solvents on morphology and performance. J Appl Polym Sci 134(9):44531–44540. https://doi.org/10.1002/app.44531

    Article  CAS  Google Scholar 

  25. Mahdavi HR, Azizi N, Arzani M, Mohammadi T (2017) Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane. J Nat Gas Sci Eng 46:275–288

    Article  CAS  Google Scholar 

  26. Mahdavi HR, Azizi N, Mohammadi T (2017) Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/γ-Al2 O 3 membrane for CO2/CH4 separation using response surface methodology. J Polym Res 24(5). https://doi.org/10.1007/s10965-017-1228-1

  27. Kim JH, Lee YM (2001) Gas permeation properties of poly (amide-6-b-ethylene oxide)–silica hybrid membranes. J Mem Sci 193(2):209–225

    Article  CAS  Google Scholar 

  28. Ren X, Ren J, Li H, Feng S, Deng M (2012) Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation. Int J Greenh Gas Control 8:111–120

    Article  CAS  Google Scholar 

  29. Paul D, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    Article  CAS  Google Scholar 

  30. Zhang N, Peng D, Wu H, Ren Y, Yang L, Wu X, Wu Y, Qu Z, Jiang Z, Cao X (2018) Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. J Mem Sci 549:670–679

    Article  CAS  Google Scholar 

  31. Xiang L, Pan Y, Zeng G, Jiang J, Chen J, Wang C (2016) Preparation of poly (ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. J Mem Sci 500:66–75

    Article  CAS  Google Scholar 

  32. Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Advances 5(100):82460–82470

    Article  CAS  Google Scholar 

  33. Aghaei Z, Naji L, Asl VH, Khanbabaei G, Dezhagah F (2018) The influence of fumed silica content and particle size in poly (amide 6-b-ethylene oxide) mixed matrix membranes for gas separation. Sep Purif Technol 199:47–56

    Article  CAS  Google Scholar 

  34. Ismail AF, Khulbe KC, Matsuura T (2015) Gas Separation Membrane Materials and Structures. In: Gas Separation Membranes. Springer, Berlin, pp 37–192

    Google Scholar 

  35. Murali RS, Sridhar S, Sankarshana T, Ravikumar Y (2010) Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind Eng Chem Res 49(14):6530–6538

    Article  CAS  Google Scholar 

  36. Yampolskii Y, Freeman B (2010) Membrane gas separation, vol 34. Wiley Online Library, Berlin

    Book  Google Scholar 

  37. Ghadimi A, Amirilargani M, Mohammadi T, Kasiri N, Sadatnia B (2014) Preparation of alloyed poly (ether block amide)/poly (ethylene glycol diacrylate) membranes for separation of CO2/H2 (syngas application). J Mem Sci 458:14–26

    Article  CAS  Google Scholar 

  38. Choi MC, Jung JY, Yeom HS, Chang YW (2013) Mechanical, thermal, barrier, and rheological properties of poly (ether-block-amide) elastomer/organoclay nanocomposite prepared by melt blending. Polym Eng Sci 53(5):982–991

    Article  CAS  Google Scholar 

  39. Ghadimi A, Amirilargani M, Mohammadi T, Kasiri N, Sadatnia B (2014) Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of CO2/h2 (syngas application). J Membr Sci 458:14–26. https://doi.org/10.1016/j.memsci.2014.01.048

    Article  CAS  Google Scholar 

  40. Rabiee H, Ghadimi A, Abbasi S, mohammadi T (2015) CO2 separation performance of poly(ether-b-amide6)/PTMEG blended membranes: Permeation and sorption properties. Chem Eng Res Des 98:96–106. https://doi.org/10.1016/j.cherd.2015.03.026

    Article  CAS  Google Scholar 

  41. Dixon D, Boyd A (2011) Degradation and accelerated ageing of poly (ether block amide) thermoplastic elastomers. Polym Eng Sci 51(11):2203–2209

    Article  CAS  Google Scholar 

  42. Wang Y, Ren J, Deng M (2011) Ultrathin solid polymer electrolyte PEI/Pebax2533/AgBF4 composite membrane for propylene/propane separation. Sep Purif Technol 77(1):46–52

    Article  CAS  Google Scholar 

  43. Kim YML J.H. (2001) Gas permeation properties of poly(amide-6-b-ethylene oxide)–silica hybrid membranes. J Mem Sci 193:209–225

    Article  Google Scholar 

  44. Dai Y, Ruan X, Yan Z, Yang K, Yu M, Li H, Zhao W, He G (2016) Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Sep Purif Technol 166:171–180. https://doi.org/10.1016/j.seppur.2016.04.038

    Article  CAS  Google Scholar 

  45. Nordin NAHM, Racha SM, Matsuura T, Misdan N, Sani NAA, Ismail AF, Mustafa A (2015) Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: synthesis and preparation. RSC Adv 5(54):43110–43120

    Article  CAS  Google Scholar 

  46. Takahashi S, Paul D (2006) Gas permeation in poly (ether imide) nanocomposite membranes based on surface-treated silica. Part 1: without chemical coupling to matrix. Polymer 47(21):7519–7534

    Article  CAS  Google Scholar 

  47. Matteucci S, Kusuma VA, Sanders D, Swinnea S, Freeman BD (2008) Gas transport in TiO2 nanoparticle-filled poly (1-trimethylsilyl-1-propyne). J Mem Sci 307(2):196–217

    Article  CAS  Google Scholar 

  48. Shariati A, Omidkhah M, Pedram MZ (2012) New permeation models for nanocomposite polymeric membranes filled with nonporous particles. Chem Eng Res Des 90(4): 563–575

    Article  CAS  Google Scholar 

  49. Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z, Jiang Z (2014) Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. J Mem Sci 460:62–70

    Article  CAS  Google Scholar 

  50. Rabiee H, Meshkat Alsadat S, Soltanieh M, Mousavi SA, Ghadimi A (2015) Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. J Ind Eng Chem 27:223–239. https://doi.org/10.1016/j.jiec.2014.12.039

    Article  CAS  Google Scholar 

  51. Rabiee H, Ghadimi A, Abbasi S (2015) CO2 separation performance of poly (ether-b-amide6)/PTMEG blended membranes: Permeation and sorption properties. Chem Eng Res Des 98: 96–106

    Article  CAS  Google Scholar 

  52. Rabiee H, Ghadimi A, Mohammadi T (2015) Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation. J Mem Sci 476:286–302. https://doi.org/10.1016/j.memsci.2014.11.037

    Article  CAS  Google Scholar 

  53. Adewole J, Ahmad A, Ismail S, Leo C (2013) Current challenges in membrane separation of CO2 from natural gas: A review. Int J Greenh Gas Control 17:46–65

    Article  CAS  Google Scholar 

  54. Ehsani A, Pakizeh M (2016) Synthesis, characterization and gas permeation study of ZIF-11/pebaxⓇ 2533 mixed matrix membranes. J Taiwan Inst Chem Eng 66:414–423

    Article  CAS  Google Scholar 

  55. Murali RS, Ismail AF, Rahman MA, Sridhar S (2014) Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Sep Purif Technol 129:1–8

    Article  CAS  Google Scholar 

  56. Nafisi V, Hägg M -B (2014) Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J Mem Sci 459:244–255

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Azizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, S., Azizi, N. & Homayoon, R. Experimental Study of CO2 and CH4 Permeability Values Through PebaxⓇ-1074/Silica Mixed Matrix Membranes. Silicon 11, 2045–2057 (2019). https://doi.org/10.1007/s12633-018-0021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-0021-z

Keywords

Navigation