Skip to main content
Log in

High Efficiency Computer Simulation for Au/n-ZnO/p-Si/Al Schottky-Type Thin Film Heterojunctions

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, the Au/n-ZnO/p-Si/Al heterojunction for developing solar cells with high conversion efficiency and low cost were studied. The Au/n-ZnO/p-Si/Al HIT (heterojunction with intrinsic thin-layer) solar cells were analyzed and designed by AFORS-HET software. The characteristics of such cells with emitter intrinsic layer thickness and interface states density are discussed. The simulation results show that the key role of the intrinsic layer inserted between the ZnO and crystalline silicon substrate p-Si is to decrease the interface states density. If the interface states density is lower than 1010 cm−2.V−1, a thinner intrinsic layer is better than a thicker one. The increase of the thickness of the emitter will decrease the short-current density and affect the conversion efficiency. The effect of Surface Recombination Velocity (SRV) front and back on the J-V characteristics of the Au/n-ZnO/p-Si/Al heterojunction solar cell has been studied with this simulation. With the optimized parameters set, the Au/n-ZnO/p-Si/Al solar cell reaches a high efficiency (η) up to 21.849 % (FF: 0.834, Voc: 0.666 V, Jsc: 39.39 mA/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhoa J, Wang A, Green MA (1998) 19.8 % efficient honey-comb textured multicrystalline and 24.4 % monocrystalline silicon solar cells. Appl Phys Lett 73:1991

    Article  Google Scholar 

  2. Hamakawa Y, Okamoto H, Nitta Y (1979) A new type of amorphous silicon photovoltaic cell generating more than 2.0 V. Appl Phys Lett 35:187–189

    Article  CAS  Google Scholar 

  3. Reuter M, Brendle W, Tobail O, Wemer JH (2009) Fifty millimeter thin solar cells with 17.0 % efficiency. Sol Energy Mater Sol Cells 93:704–706

    Article  CAS  Google Scholar 

  4. Muller J, Rech B, Springer J, Vanecek M (2004) TCO And light trapping in silicon thin film solar cells. Sol Energy 77:917–930

    Article  Google Scholar 

  5. Zeng L, Bermel P, Yi Y, et al. (2008) Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector. Appl Phys Lett 93:221105

    Article  Google Scholar 

  6. Stangl R, Schaffarzik D, Laades A, Kliefoth K, Schmidt M, Fuhs MW (2004) Characterization of interfaces in amorphous/crystalline silicon heterojunction solar cellsby surface photovoltage spectroscopy. In: Proceedings of the 19th EU PVSEC, Paris, France, pp 686–689

  7. Leendertz C, Mingirulli N, Schulze TF, Kleider JP, Rech B, Korte L (2011) Discerning passivation mechanisms at a-Si:H/c-Si interfaces by means of photoconductance measurements. Appl Phys Lett 98:202108–1/3

  8. Schulze TF, Leendertz C, Mingirulli N, Korte L, Rech B (2011) Impact of Fermi-level dependent defect equilibration on Voc of amorphous/crystalline silicon heterojunction solar cells. Energy Procedia 8:282–287

    Article  CAS  Google Scholar 

  9. Martın de Nicolas S, Munoz D, Ozanne AS, Nguyen N, Ribeyro PJ (2011) Optimisation of doped amorphous silicon layers applied to heterojunction solar cells. Energy Procedia 8:226–231

    Article  Google Scholar 

  10. Bivour M, Meinhardt C, Pysch D, Reichel C, Ritzau K, Hermle M, Glunz SW (2010) N-type silicon solar cells with Amorphous/Crystalline Silicon Hetero-Junction rear emitter. In: Proceedings of the 35th IEEE photovoltaic specia- lists conference, Honolulu, Hawaii, USA, pp 1304–1308

  11. Axelevitch A, Palankovski V, Selberherr S, Golan G (2014) Investigation of Novel Silicon PV Cells of a Lateral Type, silicon, 20 Aug

  12. Wunsch F, Citarella G, Abdallah O, Kunst M (2006) An inverted a-Si:H/c-Si heterojunction for solar energy conversion. J Non-Cryst Solids 352:1962–1966

    Article  Google Scholar 

  13. Gray JL (1991) Conference record of the 22nd IEEE photovoltaic specialists conference, Las Vegas, NV, pp 436–438

  14. Smole F, Topic M, Furlan J (1994) Sol Energy Mater Sol Cells 34:385

    Article  CAS  Google Scholar 

  15. Froitzheim A, Stangl R, Elstner L, Kriege M, Fuhs W (2003) Presented at the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May, pp 272–279

  16. Michael S, Michalopoulos P (2002) Proceedings of the 45th Midwest Symposium on Circuits and Systems Conference, vol 2, p II-651-4

  17. Brown GF, Ager JW, Walukiewicz W, Wu J (2010) Sol Energy Mater Sol Cells 94:478–483

    Article  CAS  Google Scholar 

  18. Ren BY, Wang MH, Liu XP, Li YL (2008) Acta Energy Solaris Sinica 29(2):126–129

    Google Scholar 

  19. Oueriagli A, Kassi H, Hotchandani S, Leblanc RM (1992) J Appl Phys 71:5523

    Article  CAS  Google Scholar 

  20. Sze MS (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York

  21. Rhoderick EH (1978) Metal semiconductor contacts. Oxford University Press, Oxford

    Google Scholar 

  22. Van CN, Kamloth KP (2001) Thin Solid Films 392:113

    Article  Google Scholar 

  23. El-Nahass MM, Zeyada HM, Aziz MS, El-Ghamaz NA (2005) Solid-State Electron 49:1314

    Article  CAS  Google Scholar 

  24. Forrest SR, Kaplan ML, Schmidt PH (1984) J Appl Phys 56:543

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. El-Amin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Amin, A.A. High Efficiency Computer Simulation for Au/n-ZnO/p-Si/Al Schottky-Type Thin Film Heterojunctions. Silicon 9, 385–393 (2017). https://doi.org/10.1007/s12633-016-9430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9430-z

Keywords

Navigation