Skip to main content
Log in

Polycondensation of Diethoxydimethylsilane in Active Medium

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Polycondensation of diethoxydimethylsilane (DEDMS) in an active medium containing an excess of acetic acid was studied. It has been shown that the process selectivity could be well managed only if water was generated in the reaction mixture. We have found that both linear oligomers and cyclosiloxanes could be obtained with high selectivity and 80 % yield at least under conditions of the active medium. Further condensation of the linear oligomers led to the formation of α,ω-dihydroxypolydimethylsiloxanes with the molecular weight ranging from 3500 to 70000 Da. The obtained polydimethylsiloxane samples having hydroxyl end groups correspond to the industrial samples of liquid siloxane rubbers in terms of molecular weight parameters and virtually do not contain any low molecular cyclosiloxane impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voronkov MG, Yuzhelevski YA (1978) The siloxane bond. Consultants Bureau, New York

    Google Scholar 

  2. NolI W (1968) Chemie und Technologie der Silicone, 2nd edn. Verlag Chemie, Weinheim

    Google Scholar 

  3. Chen SL, Dong P, Yang GH, Yang JJ (1996) Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate. Ind Eng Chem Res 35:4487–4493

    Article  CAS  Google Scholar 

  4. Osterholtz FD, Pohl ER (1992) Kinetics of the hydrolysis and condensation of organofunctional alkoxysilane: a review. J Adhes Sci Technol 6:127–149

    Article  CAS  Google Scholar 

  5. Oostendorp DJ, Bertrand GL, Stoffer JO (1992) Kinetics and mechanism of the hydrolysis and alcoholysis of alkoxysilanes. J Adhes Sci Technol 6:171–191

    Article  CAS  Google Scholar 

  6. Hook J (1996) A 29 Si NMR study of the sol-gel polymerization rates of substituted ethoxysilanes. J Non-Cryst Solids 195:1–15

    Article  CAS  Google Scholar 

  7. Jermouni T, Snaihi M, Hovnanian N (1995) Hydrolysis and initial polycondensation of phenylrimethoxysilane and diphenyldimethoxysilane. J Mater Chem 5:1203–1208

    Article  CAS  Google Scholar 

  8. Sakka S, Tanaka Y, Kokubo T (1986) Hydrolysis and polycondensation of dimethyldimethoxysilane and methyltriethoxysilane as materials for the sol-gel process. J Non-Cryst Solids 82:24–30

    Article  CAS  Google Scholar 

  9. Smith KA (1986) A study of the hydrolysis of methoxysilanes in a two-phase system. J Org Chem 51:3827–3830

    Article  CAS  Google Scholar 

  10. Pope EJA, Mackenzie JD (1986) Sol-gel processing of silica. 2. The role of catalyst. J Non-Cryst Solids 87:185–198

    Article  CAS  Google Scholar 

  11. Tsai MT (2002) Hydrolysis and condensation of forsterite precursor alkoxides: modification of the molecular gel structure by acetic acid. J Non-Cryst Solids 298:116–130

    Article  CAS  Google Scholar 

  12. Karmakar B, De G, Kundu D, Ganguli D (1991) Silica microspheres from the system tetraethyl orthosilicate-acetic acid-water. J Non-Cryst Solids 135:29–36

    Article  CAS  Google Scholar 

  13. Karmakar B, De G, Kundu D, Ganguli D (2000) Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J Non-Cryst Solids 272:119–126

    Article  CAS  Google Scholar 

  14. De G, Karmakar B, Ganguli D (2000) Hydrolysis-condensation reaction of TEOS in presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature. J Mater Chem 10:2289–2293

    Article  CAS  Google Scholar 

  15. Hyde JF (1953) Silanol derivatives of the dimethylsubstituted organosilicon compounds. J Am Chem Soc 75:2166–2167

    Article  CAS  Google Scholar 

  16. Kantor S W (1953) The hydrolysis of methoxysilanes. Dimethylsilanediol. J Am Chem Soc 75:2712–2714

    Article  CAS  Google Scholar 

  17. Matui M (1957) Organosilicon polymers (I). On the polymer of dimethyl-dimethoxysilane. J Sci Res Inst 51:225–232

    Google Scholar 

  18. Lasocki Z (1957) Partial hydrolysis of dimethyldimethoxysilane. Roczn Chem 31:837–845

    CAS  Google Scholar 

  19. Lasocki Z, Kret Z (1958) Bifunctional silicone monomers hydrolysis and condensation. II. Partial hydrolysis of methylethyldimethoxysilane. Roczn Chem 32:657–659

    CAS  Google Scholar 

  20. Chrzczonowicz S, Lasocki Z (1960) Bifunctional silicone monomers – hydrolysis and condensation. III. Hydrolysis of dialkyl(aryl)dimethoxysilanes. Roczn Chem 34:1662–1674

    Google Scholar 

  21. Chrzczonowicz S, Lasocki Z (1961) Bifunctional silicone monomers – hydrolysis and condensation. IV. Hydrolysis of ω, ω’ – dimethoxy(dialkylpolysiloxanes). Roczn Chem 35:127– 133

    Google Scholar 

  22. Leznov NS, Sabun LA, Andrianov KA (1959) Polydiethylsiloxane liquids: III. Action of carboxylic acids on diethylethoxysilane. Zh Obshch Khim 29:1508–1515

    CAS  Google Scholar 

  23. Leznov NS, Sabun LA, Andrianov KA (1959) Polydiethylsiloxane liquids: V. On the mechanism of reaction of diethoxysilane with acetic acid. Zh Obshch Khim 29:1518–1522

    CAS  Google Scholar 

  24. Sugahara Y, Okada S, Kuroda K, Kato C (1992) 29Si NMR study of hydrolysis and initial polycondensation process of organoalkoxysilanes. I. Dimethyldiethoxysilane. J Non-Cryst Sol 139:25–34

    Article  CAS  Google Scholar 

  25. Chiba J, Sugahara Y, Kuroda Chiba K (1994) Novel polysiloxane formation process from dimethyldiethoxysilane in the presence of oxalic acid. J Sol-Gel Sci Technol 2:153–156

    Article  CAS  Google Scholar 

  26. Rankin S, McCormick AV (1999) 29Si NMR study of base-catalyzed polymerization of dimethyldiethoxysilane. Magn Reson Chem 37:27–0037

    Article  Google Scholar 

  27. Zhang Z, Dong H, Orozco-Teran R, Mueller D, Reidy R (2003) Investigation of Polymerization and Cyclization of Dimethyldiethoxysilane by 29 Si NMR and FTIR. J Sol-Gel Sci Technol 28:159–165

    Article  CAS  Google Scholar 

  28. Ardhyananta H, Kawauchi T, Ismail H, Takeichi T (2009) Effect of pendant group of polysiloxanes on the thermal and mechanical properties of polybenzoxazine hybrids. Polym 50:5959–5969

    Article  CAS  Google Scholar 

  29. Bennevault-Celton V, Maciejak O, Desmazieres B, Cheradame H (2010) Condensation of alkoxysilanes in alcoholic media: I. Oligomerization of dimethyldiethoxysilane. Polym Int 59:43–54

    Article  CAS  Google Scholar 

  30. Egorova EV, Vasilenko NG, Demchenko NV, Tatarinova EA, Muzafarov AM (2009) Polycondensation of alkoxysilanes in an active medium as a versatile method for the preparation of polyorganosiloxanes. Dokl Chem 424:15–18

    Article  CAS  Google Scholar 

  31. Voronina NV, Meshkov IB, Myakushev VD, Demchenko NV, Laptinskaya TV, Muzafarov AM (2008) Inorganic core/organic shell hybrid nanoparticles: synthesis and characterization. Nanotechnol in Russia 3:321–329

    Article  Google Scholar 

  32. Bychkova AA, Soskov FV, Demchenko AI, Storozhenko PA, Muzafarov AM (2011) Condensation of methylphenylalkoxysilanes in an active medium as a selective method for synthesis of cyclic or linear methylphenylsiloxanes. Russ Chem Bull 6:2384–2389

    Article  Google Scholar 

  33. Milenin SA, Kalinina AA, Demchenko NV, Vasilenko NG, Muzafarov AM (2013) Synthesis of diethoxy(phenyl)silane and its polycondensation in acetic acid. Russ Chem Bull 62:705– 709

    Article  CAS  Google Scholar 

  34. Chojnowski J (1993) In: Clarson SJ, Semlyen JA (eds) Siloxane polymers, eds. Prentice Hall, Englewood Cliffs

  35. Semlyen JA (1993) In: Clarson SJ, Semlyen JA (eds) Siloxane polymers. Prentice Hall, Englewood Cliffs

  36. Khananashvili LM (1998) Khimiya i tekhnologiya elementoorganicheskikh monomerov i polimerov (Chemistry and Technology of Heteroelement-Containing Organic Monomers and Polymers) Khimiya. Moscow

  37. Armaredo WLF, Perkin DD (2002) Purification of laboratory chemicals butterworth heinemann. Oxford

  38. Toskas G, Moraeu M, Masure M, Sigwalt P (2001) Controlled Cationic Polymerization of Hexamethylcyclotrisiloxane. Macromol 34:4730–4736

    Article  CAS  Google Scholar 

  39. Rubinsztajn S, Cypryk M, Chojnowski J (1989) Condensation of model linear siloxane oligomers possessing silanol and silyl chloride end groups. The mechanism of silanol silylation by a chlorosilane in the presence of neutral nucleophiles. J Organomet Chem 367:27–37

    Article  CAS  Google Scholar 

  40. Mark EJ, Allcock H, West R (1992) Inorganic polymers. Prentice Hall, Englewood Cliffs

    Google Scholar 

  41. Babu G, Christopher S, Newmark R (1987) Poly(dimethylsiloxane-co-diphenylsiloxanes): synthesis, characterization, and sequence analysis. Macromol 20:2654–2659

    Article  CAS  Google Scholar 

  42. Chojnowski J, Cypryk M, Kazmierski K, Rozga K (1990) The reactivity of monomeric silanol intermediates in the hydrolytic polycondensation of tetraethoxysilane in acidic media. J Sol-Gel Sci Technol 25:40–49

    Google Scholar 

  43. Kazmierski K, Chojnowski J, McVie J (1994) The acid-catalyzed condensation of methyl substituted model oligosiloxanes bearing silanol and ethoxysilane functions. Eur Polym J 30:515– 527

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Kalinina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, A., Strizhiver, N., Vasilenko, N. et al. Polycondensation of Diethoxydimethylsilane in Active Medium. Silicon 7, 95–106 (2015). https://doi.org/10.1007/s12633-014-9233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9233-z

Keywords

Navigation