Skip to main content
Log in

Heat-Resistant and Anti-Corrosion Urethane-Silicone-based Coatings

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Novel silicone-based coating materials were prepared by the copolymerization of alkoxysilanes with pre-synthesized tailored polyurethane/polyurea copolymer end-capped with siloxane. The structure of the pre-synthesized copolymer and that of the obtained silicone-polyurethane/polyurea copolymer (SPPU) with different hard segment (HS) contents were analyzed by an FT-IR spectroscopic method. The molecular weight and molecular weight distribution of the SPUU was determined by Gel Permeation Chromatography (GPC). The thermal properties of the SPUU copolymers were performed by Thermogravimetric Analysis (TGA). The mechanical and adhesion properties of the copolymers were also investigated by standard methods. Their morphology was studied by Scanning Electron Microscopy (SEM). The electrochemical impedance spectroscopy (EIS) evaluation shows that the protective and anticorrosion properties of these coating materials do not strictly depend on the hard HS content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leidheiser HJ (1987). In: Dekker M (ed) Corrosion Mechanisms. New York, p 165

  2. Barton K (1976) Protection against atmospheric corrosion. New York

  3. Hua Z, Chen ZL, Nan F, Lin A, Gan FX (2008) Preparation of epoxy modified organosilicone high-temperature resistance coatings. Key Eng Mat 373–374:437–437. doi:10.4028/www.scientific.net/KEM.373–374.434

    Google Scholar 

  4. Mathivanan L, Radhakrishna S (1997) Heat-resistant anticorrosive paint from epoxy-silicone vehicules. Anti-Corros Method M 44(6):400–406. doi:10.1108/00035599710185476

    Article  CAS  Google Scholar 

  5. Jia M, Wu C, Li W, Gao D (2009) Synthesis and characterization of silicon resin with silphenylene units in Si-O-Si backbones. J Appl Polym Sci 114(2):971–977. doi:10.1002/app.30635

    Article  CAS  Google Scholar 

  6. Lucas PL, Robin JJ (2007) Silicone-based polymer blends: an overview of materials and processes. In: Adv. Polym. Sci., vol 209. Springer, Berlin. doi:10.1007/12_2007_115

    Google Scholar 

  7. Smith TL (1978) Strength of elastomers. A perspective. Rubber Chem Technol 51:225. doi:10.5254/1.3545831

    Article  Google Scholar 

  8. Yilgor I, McGrath JE (1988) Polysiloxane containing copolymers: a survey of recent developments. Adv Polym Sci 86:1–86. doi:10.1007/BFb0025274

    Article  CAS  Google Scholar 

  9. Molotova VA (1978) Industrial applications of silicone coatings. Moscow

  10. Mazurek MH (2007) Silicones. In: Comprehensive organometallic chemistry, vol III. Elsiever Ltd, pp 551–607

  11. Witucki GL (2003) The evolution of silicon-based technology in coating. Dow Corning Corporation

  12. Leir CM, Galkiewicz RK, Kantner SS, Mazurek M (2010) Telechelic siloxanes with hydrogen-bonded polymerizable end groups. I. Liquid rubbers and elastomers. J Appl Polym Sci 117(2):756–656. doi:10.1002/app.31757

    Article  Google Scholar 

  13. Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. Shawbury, UK

  14. Ma M, Hill RM, Lowery JL, Fridrickh SV, Rutledge GC (2005) Electrospun Poly(Styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21(12):5549–5554. doi:10.1021/la047064y

    Article  CAS  Google Scholar 

  15. Holohan AT, George MH, Barrie JA, Parker DG (1994) Polyhydroxyether-polydimethylsiloxane graft copolymers: 2. Properties and morphology. Polymer 35:977–982. doi:10.1016/0032-3861(94)90941-5

    Article  CAS  Google Scholar 

  16. Furukawa H, Shirahata A (1994) Polyamide resin composition. EP Patent 581.224,

  17. Wagner M, Wolf BA (1993) Effect of block copolymer on the interfacial tension between two ‘immiscible’ homopolymers. Polymer 34(7):1460–1464. doi:10.1016/0032-3861(93)90862-5

    Article  CAS  Google Scholar 

  18. Khandpur AK, Guegan P, Macosko CW Compatibilizers for A/B blends: A-C-B triblock versus A-B diblock copolymers. In: SPE Regional technical conference on polymer alloys and blends., Quebec, Boucherville, Oct 19–20 (1995). Polyblends’95, pp 88–96

  19. Fleischer CA, Morales AR, Koberstein JT (1994) Interfacial modification through end group complexation in polymer blends. Macromolecules 27(2):379–385. doi:10.1021/ma00080a010

    Article  CAS  Google Scholar 

  20. Hamurcu EE, Baysal, BM (1993) Interpenetrating polymer networks of poly(dimethylsiloxane): 1. Preparation and characterization. Polymer 34(24):5163–5167. doi:10.1016/0032-3861(93)90264-B

    Article  CAS  Google Scholar 

  21. Turner J, Cheng YL (2001) Process for preparing interpenetrating polymer networks of controlled morphology. U.S. Patent 6.331.578,

  22. Ebdon JR, Hourston DJ, Klein PG (1984) Polyurethane-polysiloxane interpenetrating polymer networks. A polyether urethane-poly (dimethylsiloxane) system. Polymer 25(11):1079–1085. doi10.1016/0032–3861(84)90159–9

    Article  Google Scholar 

  23. Zhou P, Xu Q, Frisch HL (1994) Kinetics of simultaneous interpenetrating polymer networks of poly (dimethylsiloxane-urethane) poly (methyl methacrylate) formation and studies of their phase morphology. Macromolecules 27(4):938–946. doi:10.1021/ma00082a009

    Article  CAS  Google Scholar 

  24. Fujiki M, Furuta D, Naito M (2004) Manifacture of semi-IPN (interpenetrating polymer network) composite and the composite made of crosslinkable siloxane and radically polymerized polymer. JP Patent 2004263062,

  25. Gilmer TC, Hall PK, Ehrenfeld H, Wilson K, Bivens T, Clay D, Endresz C (1996) Synthesis, characterization and mechanical properties of PMMA/poly(aromatic/aliphatic siloxane) semi-interpenetrating polymer network. J Polym Sci 34(6):1025–1077. doi:10.1002/(SICI)1099–0518(19960430)34:6<1025::AID-POLA12>3.0.CO;2–9

    CAS  Google Scholar 

  26. Yu X, Nagarajan MR, Grasel TG, Gibson P, Cooper SL (1985) Poly- dimethylsiloxane-polyurethane elastomers: synthesis and properties of segmented copolymers and related zwitterionomers. J Polym Sc: Polym Phys Ed 23(11):2319–2338. doi:10.1002/pol.1985.180231106

    Article  CAS  Google Scholar 

  27. Li C, Yu X, Speckhard T, Cooper S (1988) Synthesis and properties of polycyanoethylmethylsiloxane polyurea urethane elastomers: A study of segmental compatibility. J Polym Sci Polym Phys Ed 26:315–337. doi:10.1002/polb.1988.090260209

    Article  CAS  Google Scholar 

  28. Yilgor I, Eynur T, Bilgin S, Ylgor E, Wilkes GL (2011) Influence of soft segment molecular weight on the mechanical hystheresis and set behavior of silicone-urea copolymers with low hard segment content. Polymer 52(2):266–274. doi:10.1016/j.polymer.2010.11.040

    Article  CAS  Google Scholar 

  29. Shibayama M, Inoue M, Yamamoto T, Nomura S (1990) Structure and orientational behaviour of polyurethane containing polydimethylsiloxane. Polymer 31(4):749–757. doi:10.1016/0032-3861(90)90299-E

    Article  CAS  Google Scholar 

  30. Kazama H, Ono T, Tezuka T, Imai K (1989) Synthesis of polyurethane-polysiloxane graft polymer using uniform-size poly(dimethylsiloxane) with a diol end group. Polymer 30(3):553–557. doi:10.1016/0032-3861(89)90030-X

    Article  CAS  Google Scholar 

  31. Choi T, Weksler J, Padsalgikar A, Runt J (2009) Influence of soft segment composition on phase sparated microstructure of polydimethylsiloxane-based segmented polyurethane copolymers. Polymer 50(7):2320–2327. doi:10.1016/j.polymer.2009.03.024

    Article  CAS  Google Scholar 

  32. Xiaodong S et al (2008) Concurrent physical aging and degradation of crosslinked coating system accelerated weathering. J Coat Technol Res 5(3):299–309. doi:10.1007/s11998-008-9081-0

    Article  Google Scholar 

  33. Sobolevsky MV (1985) Oligoorganosiloxanes: properties, obtaining and applications. Moscow

  34. Joshi VP (2009) Studies on synthesis & characterization of thermoplastic polyurethane-urea copolymers. Dissertation, University of Pune, Pune, India

  35. Sun Z-H, Cai J-P, Liu M, Lu F, Zhang N (2010) electrochemical impedance study of zinc yellow polypropylene-coated aluminum alloy. Int J Corros 2010. doi:10.1155/2010/528573

    Google Scholar 

  36. Sonke J, Bos WM (2008) Scientific methods for qualification and selection of protective coatings. J Protect Coat & Linings

  37. Amirudin A, Thierry D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Swedish Corrosion Institute.

  38. Krol P (2008) Linear polyurethanes: synthesis methods, chemical structures, properties and applications. Leiden-Boston

  39. Tarutina LI, Pozdnyakova FO (1986) Spectral analysis of polymers. Leningrad

  40. Mistry BD (2009) A handbook of spectroscopic data—chemistry (UV, IR, PRM, 13CNMR and Mass Spectroscopy). Jaipur, India

  41. Oprea S, Oprea V (2010) Influence of crosslinkers on properties of new polyurethane elastomers. Mater Plast 47:54–58

    CAS  Google Scholar 

  42. Huang S-L, Lai J-Y (1997) Structure-tensile properties of polyurethanes. Eur Polym J 33(10–12):1563–1567. doi:10.1016/S0014-3057(97)00058-X

    Article  CAS  Google Scholar 

  43. Belenky BG, Vilenchik LZ (1978) Chromatography of polymers. Moscow

  44. Korshak VV (1969) Thermal resistant polymers. Moscow

  45. De PP, Roy NC, Dutta NK (2010) Thermal analysis of rubbers and ruberry materials. Shawbury

  46. Pielichowski K, Njuguna J (2005) Thermal degradation of polymer materials. Shawbury

  47. Pielichowski K, Janowski B (2005) Semi-inter penetrating Polymer Networks of Polyurethane and Poly(vinyl Chloride). Thermal Stability Assessment. J Therm Anal Calorim 80:147–151. doi:10.1007/s10973-005-0627-4

    Article  CAS  Google Scholar 

  48. Fu-Sheng C, Hung-Yi T et al (2008) Thermal degradation of Poly (siloxane-urethane) copolymers. Polym Degrad Stab 93:1753–17761. doi:10.1016/j.polymdegradstab.2008.07.029

    Article  Google Scholar 

  49. Nguyen D, Chambon P, Rosselgong J, Cloutet E, Gramail H, Ravaine S (2008) Simple route to get very hydrophobic surfaces of fibrous materials with core-shell latex particles. J Appl Polym Sci 108(5):2772–2777. doi:10.1002/app.27594

    Article  CAS  Google Scholar 

  50. Hillmyer MA, Lodge TP (2002) Synthesis and self-assembly of fluorinated block copolymers. J Polym Sci 40(1):1–8. doi:10.1002/pola.10074

    CAS  Google Scholar 

  51. Jenekhe SA, Chen XL (1999) Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 283:372–375. doi:10.1126/science.283.5400.372

    Article  CAS  Google Scholar 

  52. Olsen BD, Segalman RA (2008) Self-assembly of rod-coil block copolymers. Mat Sci Eng R 62(2):37–66. doi:10.1016/j.mser.2008.04.001

    Article  Google Scholar 

  53. Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29:635–698. doi:10.1016/j.progpolymsci.2004.03.001

    Article  CAS  Google Scholar 

  54. Joki-Korpela F, Pakkaren TT (2011) Incorporation of polydimethylsiloxane into polyurethanes and characterization of copolymers. Eur Polym J 47:1694–1708. doi:10.1016/j.eurpolymj.2011.06.006

    Article  CAS  Google Scholar 

  55. O’Donoghe M, Garrett R, Datta V, Roberts P, Abens T (2003) electrochemical impedance spectroscopy: testing coating for rapid immersion service. Coatings & Linings, Houston, Texas

  56. Loveday D, Peterson P et al (2005) Evaluation of organic coatings with electrochemical impedance spectroscopy. Part 1, 2 and 3. JCT coatings tech.

  57. Jorcin JB, Orazen ME, Pébère N, Tribollet B (2005) CPE analysis by local electrochemical impedance spectroscopy.

  58. Tsai CH, Mansfeld F (1993) Determination of coating deterioration with EIS: part II. Development of a method for field testing of protective coatings. Corros 49(9):726–737. doi:10.5006/1.3316106

    Article  CAS  Google Scholar 

  59. Leidheiser H (1979) Electrical and electrochemical measurements as predictors of corrosion at the metal-organic coating interface. Prog Org Coat 7:79–104. doi:10.1016/0300-9440(79)80038-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Qiu Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailova, A.M., Tamboura, M. & Jia, M.Q. Heat-Resistant and Anti-Corrosion Urethane-Silicone-based Coatings. Silicon 4, 197–208 (2012). https://doi.org/10.1007/s12633-012-9123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-012-9123-1

Keywords

Navigation