Skip to main content

Advertisement

Log in

Designing new low alloyed Mg—RE alloys with high strength and ductility via high-speed extrusion

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Two new low-alloyed Mg—2RE—0.8Mn—0.6Ca—0.5Zn (wt%, RE = Sm or Y) alloys are developed, which can be produced on an industrial scale via relatively high-speed extrusion. These two alloys are not only comparable to commercial AZ31 alloy in extrudability, but also have superior mechanical properties, especially in terms of yield strength (YS). The excellent extrudability is related to less coarse second-phase particles and high initial melting point of the two as-cast alloys. The high strength—ductility mainly comes from the formation of fine grains, nano-spaced submicron/nano precipitates, and weak texture. Moreover, it is worth noting that the YS of the two alloys can maintain above 160 MPa at elevated temperature of 250°C, significantly higher than that of AZ31 alloy (YS: 45 MPa). The Zn/Ca solute segregation at grain boundaries, the improved heat resistance of matrix due to addition of RE, and the high melting points of strengthening particles (Mn, MgZn2, and Mg—Zn—RE/Mg—Zn—RE—Ca) are mainly responsible for the excellent high-temperature strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Zhang, J.H. Zhang, J. Wang, et al., Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30.

    Article  CAS  Google Scholar 

  2. J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, and M.L. Zhang, Recent developments in high-strength Mg—RE-based alloys: Focusing on Mg—Gd and Mg—Y systems, J. Magnes. Alloys, 6(2018), No. 3, p. 277.

    Article  CAS  Google Scholar 

  3. M.F. Qi, L.Y. Wei, Y.Z. Xu, et al., Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg—2Zn—0.1Mn—0.3Ca—xY biological magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1746.

    Article  CAS  Google Scholar 

  4. B.C. Suh, M.S. Shim, K.S. Shin, and N.J. Kim, Current issues in magnesium sheet alloys: Where do we go from here? Scripta Mater., 84–85(2014), p. 1.

    Google Scholar 

  5. J.S. Xie, J.H. Zhang, Z. Zhang, et al., New insights on the different corrosion mechanisms of Mg alloys with solute-enriched stacking faults or long period stacking ordered phase, Corros. Sci., 198(2022), art. No. 110163.

  6. L.X. Hong, R.X. Wang, and X.B. Zhang, Effects of Nd on microstructure and mechanical properties of as-cast Mg—12Gd—2Zn—xNd—0.4Zr alloys with stacking faults, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1570.

    Article  CAS  Google Scholar 

  7. H. Wu and G.H. Fan, An overview of tailoring strain delocalization for strength—ductility synergy, Prog. Mater. Sci., 113(2020), art. No. 100675.

  8. J. Han, C. Wang, Y.M. Song, Z.Y. Liu, J.P. Sun, and J.Y. Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1551.

    Article  CAS  Google Scholar 

  9. K. Yang, H.C. Pan, S. Du, et al., Low-cost and high-strength Mg—Al—Ca—Zn—Mn wrought alloy with balanced ductility, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1396.

    Article  Google Scholar 

  10. M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, and S. Kamado, High-speed extrusion of dilute Mg—Zn—Ca—Mn alloys and its effect on microstructure, texture and mechanical properties, Mater. Sci. Eng. A, 678(2016), p. 329.

    Article  CAS  Google Scholar 

  11. H.B. Yang, Y.F. Chai, B. Jiang, et al., Enhanced mechanical properties of Mg—3Al—1Zn alloy sheets through slope extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1343.

    Article  CAS  Google Scholar 

  12. T. Nakata, T. Mezaki, R. Ajima, et al., High-speed extrusion of heat-treatable Mg—Al—Ca—Mn dilute alloy, Scripta Mater., 101(2015), p. 28.

    Article  CAS  Google Scholar 

  13. M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, and S. Kamado, Rare earth texture and improved ductility in a Mg—Zn—Gd alloy after high-speed extrusion, Mater. Sci. Eng. A, 667(2016), p. 233.

    Article  CAS  Google Scholar 

  14. W.L. Cheng, M. Wang, Z.P. Que, et al., Microstructure and mechanical properties of high speed indirect-extruded Mg—5Sn—(1,2,4)Zn alloys, J. Central South Univ., 20(2013), No. 10, p. 2643.

    Article  CAS  Google Scholar 

  15. F.Z. Meng, S.H. Lv, Q. Yang, et al., Multiplex intermetallic phases in a gravity die-cast Mg—6.0Zn—1.5Nd—0.5Zr (wt%) alloy, J. Magnes. Alloys, 10(2022), No. 1, p. 209.

    Article  CAS  Google Scholar 

  16. S.H. Park, S.H. Kim, H.S. Kim, J. Yoon, and B.S. You, Highspeed indirect extrusion of Mg—Sn—Al—Zn alloy and its influence on microstructure and mechanical properties, J. Alloys Compd., 667(2016), p. 170.

    Article  CAS  Google Scholar 

  17. Z.R. Zeng, Y.M. Zhu, J.F. Nie, S.W. Xu, C.H.J. Davies, and N. Birbilis, Effects of calcium on strength and microstructural evolution of extruded alloys based on Mg—3Al—1Zn—0.3Mn, Metall. Mater. Trans. A, 50(2019), No. 9, p. 4344.

    Article  CAS  Google Scholar 

  18. U.M. Chaudry, K. Hamad, and Y.G. Ko, Effect of calcium on the superplastic behavior of AZ31 magnesium alloy, Mater. Sci. Eng. A, 815(2021), art. No. 140874.

  19. Y.H. Luo, W.L. Cheng, H. Yu, et al., Tailoring the microstructural characteristics and enhancing creep properties of as-cast Mg—5Bi—5Sn alloy through Mn addition, J. Magnes. Alloys, 2022. https://doi.org/10.1016/jjma.2021.12.004

  20. J.S. Xie, J.H. Zhang, Z.H. You, et al., Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying, J. Magnes. Alloys, 9(2021), No. 1, p. 41.

    Article  CAS  Google Scholar 

  21. P. Peng, A.T. Tang, J. She, et al., Significant improvement in yield stress of Mg—Gd—Mn alloy by forming bimodal grain structure, Mater. Sci. Eng. A, 803(2021), art. No. 140569.

  22. S.C. Jin, J.W. Cha, S.H. Joo, and S.H. Park, Enhancing tensile strength and ductility of high-speed-extruded Mg—5Bi—2Al through trace Mn addition, Mater. Charact., 181(2021), art. No. 111500.

  23. Z. Zhang, J.H. Zhang, J.S. Xie, et al., Developing a low-alloyed fine-grained Mg alloy with high strength—ductility based on dislocation evolution and grain boundary segregation, Scripta Mater., 209(2022), art. No. 114414.

  24. T.T.T. Trang, J.H. Zhang, J.H. Kim, et al., Designing a magnesium alloy with high strength and high formability, Nat. Commun., 9(2018), art. No. 2522.

  25. Z. Zhang, J.H. Zhang, J.S. Xie, et al., Significantly enhanced grain boundary Zn and Ca co-segregation of dilute Mg alloy via trace Sm addition, Mater. Sci. Eng. A, 831(2022), art. No. 142259.

  26. D.B. Williams and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed., Springer, New York, 2009.

    Book  Google Scholar 

  27. P. Peng, J. She, A.T. Tang, et al., A strategy to regulate the microstructure and properties of Mg—2.0Zn—1.5Mn magnesium alloy by tracing the existence of Mn element, J. Alloys Compd., 890(2022), art. No. 161789.

  28. H.C. Pan, G.W. Qin, Y.M. Huang, et al., Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength, Acta Mater., 149(2018), p. 350.

    Article  CAS  Google Scholar 

  29. K. Zhang, Z.T. Shao, C.S. Daniel, et al., A comparative study of plastic deformation mechanisms in room-temperature and cryogenically deformed magnesium alloy AZ31, Mater. Sci. Eng. A, 807(2021), art. No. 140821.

  30. R. Ni, S.J. Ma, L.J. Long, et al., Effects of precipitate on the slip activity and plastic heterogeneity of Mg—11Y—5Gd—2Zn—0.5Zr (wt. %) during room temperature compression, Mater. Sci. Eng. A, 804(2021), art. No. 140738.

  31. A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel, and H.E. Kadiri, Nucleation and preferential growth mechanism of recrystallization texture in high purity binary magnesium—rare earth alloys, Acta Mater., 138(2017), p. 27.

    Article  CAS  Google Scholar 

  32. Z. Koren, H. Rosenson, E.M. Gutman, Y.B. Unigovski, and A. Eliezer, Development of semisolid casting for AZ91 and AM50 magnesium alloys, J. Light Met., 2(2002), No. 2, p. 81.

    Article  Google Scholar 

  33. E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. Sect. B, 64(1951), No. 9, p. 747.

    Article  Google Scholar 

  34. J. Zhao, B. Jiang, Q.S. Wang, et al., Effects of Li addition on microstructures and tensile properties of the extruded Mg—1Zn—xLi alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1380.

    Article  CAS  Google Scholar 

  35. J.F. Nie, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A, 43(2012), No. 11, p. 3891.

    Article  CAS  Google Scholar 

  36. R. Alizadeh, J.Y. Wang, and J. LLorca, Precipitate strengthening of pyramidal slip in Mg—Zn alloys, Mater. Sci. Eng. A, 804(2021), art. No. 140697.

  37. B. Kim, C.H. Hong, J.C. Kim, et al., Factors affecting the grain refinement of extruded Mg—6Zn—0.5Zr alloy by Ca addition, Scripta Mater., 187(2020), p. 24.

    Article  CAS  Google Scholar 

  38. J. Hu, Y.N. Shi, X. Sauvage, G. Sha, and K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals, Science, 355(2017), No. 6331, p. 1292.

    Article  CAS  Google Scholar 

  39. M. Zha, H.M. Zhang, H.L. Jia, et al., Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al—7Mg alloy, Int. J. Plast., 146(2021), art. No. 103108.

  40. Z.H. Huang, L.Y. Wang, B.J. Zhou, T. Fischer, S.B. Yi, and X.Q. Zeng, Observation of non-basal slip in Mg—Y by in situ three-dimensional X-ray diffraction, Scripta Mater., 143(2018), p. 44.

    Article  CAS  Google Scholar 

  41. Z.X. Wu and W.A. Curtin, The origins of high hardening and low ductility in magnesium, Nature, 526(2015), No. 7571, p. 62.

    Article  CAS  Google Scholar 

  42. C. Zhang, L. Wu, G.S. Huang, G.G. Wang, B. Jiang, and F.S. Pan, Microstructure and corrosion properties of Mg—0.5Zn—0.2Ca—0.2Ce alloy with different processing conditions, Rare Met., 40(2021), No. 7, p. 1924.

    Article  CAS  Google Scholar 

  43. P.F. Qin, Q. Yang, Y.Y. He, et al., Microstructure and mechanical properties of high-strength high-pressure die-cast Mg—4Al—3La—1Ca—0.3Mn alloy, Rare Met., 40(2021), No. 10, p. 2956.

    Article  CAS  Google Scholar 

  44. C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez-Prado, Effect of grain size on slip activity in pure magnesium polycrystals, Acta Mater., 84(2015), p. 443.

    Article  Google Scholar 

  45. H. Zhang, H.Y. Wang, J.G. Wang, et al., The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys, J. Alloys Compd., 780(2019), p. 312.

    Article  CAS  Google Scholar 

  46. H.Y. Wang, Z.P. Yu, L. Zhang, et al., Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process, Sci. Rep., 5(2015), No. 1, art. No. 17100.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52071093 and 51871069), the Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (HIT), Ministry of Education (No. 2020 KM009), the Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities (No. 3072022GIP1004), and the Science and Technology Innovation Major Project of Ningbo City, China (No. 2019B10103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinghuai Zhang, Jun Wang or Liwei Lu.

Additional information

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Zhang, Z., Liu, S. et al. Designing new low alloyed Mg—RE alloys with high strength and ductility via high-speed extrusion. Int J Miner Metall Mater 30, 82–91 (2023). https://doi.org/10.1007/s12613-022-2472-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2472-x

Keywords

Navigation