Skip to main content
Log in

Comprehensive utilization of complex rubidium ore resources: Mineral dissociation and selective leaching of rubidium and potassium

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Currently, the process of extracting rubidium from ores has attracted a great deal of attention due to the increasing application of rubidium in high-technology field. A novel process for the comprehensive utilization of rubidium ore resources is proposed in this paper. The process consists mainly of mineral dissociation, selective leaching, and desilication. The results showed that the stable silicon—oxygen tetrahedral structure of the rubidium ore was completely disrupted by thermal activation and the mineral was completely dissociated, which was conducive to subsequent selective leaching. Under the optimal conditions, extractions of 98.67% Rb and 96.23% K were obtained by leaching the rubidium ore. Moreover, the addition of a certain amount of activated Al(OH)3 during leaching can effectively inhibit the leaching of silicon. In the meantime, the leach residue was sodalite, which was successfully synthesized to zeolite A by hydrothermal conversion. The proposed process provided a feasible strategy for the green extraction of rubidium and the sustainable utilization of various resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.O. Quarrie, The effects of atomic rubidium vapor on the performance of optical windows in diode pumped alkali lasers (DPALs), Opt. Mater., 35(2013), No. 5, p. 843.

    Article  Google Scholar 

  2. S.S. Losev, D.I. Sevostianov, V.V. Vassiliev, and V.L. Velishansky, Production of miniature glass cells with rubidium for chip scale atomic clock, Phys. Procedia, 71(2015), p. 242.

    Article  CAS  Google Scholar 

  3. P.C. Harikesh, H.K. Mulmudi, B. Ghosh, et al., Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics, Chem. Mater., 28(2016), No. 20, p. 7496.

    Article  CAS  Google Scholar 

  4. S. Wang, R.X. Ma, C.Y. Wang, S.N. Li, and H. Wang, Incorporation of Rb cations into Cu2FeSnS4 thin films improves structure and morphology, Mater. Lett., 202(2017), p. 36.

    Article  CAS  Google Scholar 

  5. M. Saliba, T. Matsui, K. Domanski, et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354(2016), No. 6309, p. 206.

    Article  CAS  Google Scholar 

  6. L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538.

    Article  Google Scholar 

  7. N. Vieceli, C.A. Nogueira, M.F.C. Pereira, et al., Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate, Miner. Eng., 102(2017), p. 1.

    Article  CAS  Google Scholar 

  8. H. Guo, G. Kuang, J.X. Yang, and S. Hu, Fundamental research on a new process to remove Al3+ as potassium alum during lithium extraction from lepidolite, Metall. Mater. Trans. B, 47(2016), No. 6, p. 3557.

    Article  CAS  Google Scholar 

  9. Z.Q. Shan, X.Q. Shu, J.F. Feng, and W.N. Zhou, Modified calcination conditions of rare alkali metal Rb-containing muscovite (KAl2[AlSi3O10](OH)2), Rare Met., 32(2013), No. 6, p. 632.

    Article  CAS  Google Scholar 

  10. M.R. Tavakoli Mohammadi, S.M. Javad Koleini, S. Javanshir, H. Abolghasemi, and M. Abdollahy, Extraction of rubidium from gold waste: Process optimization, Hydrometallurgy, 151(2015), p. 25.

    Article  CAS  Google Scholar 

  11. X.H. Guo, M.P. Zheng, X.F. Liu, Z. Nie, and L. Pu, Saline cesium resource and prospect of its exploitation and utilization in Tibet, J. Salt. Chem. Ind., 37(2008), p. 24.

    Google Scholar 

  12. T. Nur, G. Naidu, P. Loganathan, J. Kandasamy, and S. Vigneswaran, Rubidium recovery using potassium cobalt hexacyanoferrate sorbent, Desalin. Water Treat., 57(2016), No. 55, p. 26577.

    Article  CAS  Google Scholar 

  13. Y.S. Liao and D.J. Yang, Application status of rubidium resource and research situation of its extraction technology, Yunnan Metall., 41(2012), No. 4, p. 27.

    Google Scholar 

  14. G. Naidu, P. Loganathan, S. Jeong, et al., Rubidium extraction using an organic polymer encapsulated potassium copper hexacyanoferrate sorbent, Chem. Eng. J., 306(2016), p. 31.

    Article  CAS  Google Scholar 

  15. M.S. Safarzadeh, M.S. Moats, and J.D. Miller, Acid bake-leach process for the treatment of enargite concentrates, Hydrometallurgy, 119–120(2012), p. 30.

    Article  Google Scholar 

  16. P. Meshram, Abhilash, B.D. Pandey, T.R. Mankhand, and H. Deveci, Acid baking of spent lithium ion batteries for selective recovery of major metals: A two-step process, J. Ind. Eng. Chem., 43(2016), p. 117.

    Article  CAS  Google Scholar 

  17. S.L. Zheng, P. Li, L. Tian, et al., A chlorination roasting process to extract rubidium from distinctive Kaolin ore with alternative chlorinating reagent, Int. J. Miner. Process., 157(2016), p. 21.

    Article  CAS  Google Scholar 

  18. Q.X. Yan, X.H. Li, Z.X. Wang, et al., Extraction of lithium from lepidolite by sulfation roasting and water leaching, Int. J. Miner. Process., 110–111(2012), p. 1.

    Article  Google Scholar 

  19. C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478.

    Article  CAS  Google Scholar 

  20. P. Xing, C.Y. Wang, B.Z. Ma, L. Wang, W.J. Zhang, and Y.Q. Chen, Rubidium and potassium extraction from granitic rubidium ore: Process optimization and mechanism study, ACS Sustainable Chem. Eng., 6(2018), No. 4, p. 4922.

    Article  CAS  Google Scholar 

  21. Q. Zeng, S.Z. Li, W. Sun, L. Hu, H. Zhong, and Z.G. He, Eco-friendly leaching of rubidium from biotite-containing minerals with oxalic acid and effective removal of Hg2+ from aqueous solution using the leaching residues, J. Cleaner Prod., 306(2021), art. No. 127167.

  22. H. Xu and J.S.J. van Deventer, The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars, Colloids Surf. A, 216(2003), No. 1–3, p. 27.

    Article  CAS  Google Scholar 

  23. B.E. Kalinowski and P. Schweda, Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature, Geochim. Cosmochim. Acta, 60(1996), No. 3, p. 367.

    Article  CAS  Google Scholar 

  24. D. Ciceri, M. de Oliveira, R.M. Stokes, T. Skorina, and A. Allanore, Characterization of potassium agrominerals: Correlations between petrographic features, comminution and leaching of ultrapotassic syenites, Miner. Eng., 102(2017), p. 42.

    Article  CAS  Google Scholar 

  25. K.H. Park, H.I. Kim, P.K. Parhi, et al., Extraction of metals from Mo-Ni/Al2O3 spent catalyst using H2SO4 baking-leaching-solvent extraction technique, J. Ind. Eng. Chem., 18(2012), No. 6, p. 2036.

    Article  CAS  Google Scholar 

  26. Y.M. Chen, N.N. Liu, L.G. Ye, S. Xiong, and S.H. Yang, A cleaning process for the removal and stabilisation of arsenic from arsenic-rich lead anode slime, J. Cleaner Prod., 176(2018), p. 26.

    Article  CAS  Google Scholar 

  27. Z. Luo, J. Yang, H.W. Ma, M.T. Liu, and X. Ma, Recovery of magnesium and potassium from biotite by sulfuric acid leaching and alkali precipitation with ammonia, Hydrometallurgy, 157(2015), p. 188.

    Article  CAS  Google Scholar 

  28. N. Harouiya and E.H. Oelkers, An experimental study of the effect of aqueous fluoride on quartz and alkali-feldspar dissolution rates, Chem. Geol., 205(2004), No. 1–2, p. 155.

    Article  CAS  Google Scholar 

  29. S. Nisan, F. Laffore, C. Poletiko, and N. Simon, Extraction of rubidium from the concentrated brine rejected by integrated nuclear desalination systems, Desalin. Water Treat., 8(2009), No. 1–3, p. 236.

    Article  CAS  Google Scholar 

  30. Q. Zeng, L.M. Huang, D.X. Ouyang, Y.H. Hu, H. Zhong, and Z.G. He, Process optimization on the extraction of rubidium from rubidium-bearing biotite, Miner. Eng., 137(2019), p. 87.

    Article  CAS  Google Scholar 

  31. Y.W. Lv, P. Xing, B.Z. Ma, et al., Efficient extraction of lithium and rubidium from polylithionite via alkaline leaching combined with solvent extraction and precipitation, ACS Sustainable Chem. Eng., 8(2020), No. 38, p. 14462.

    Article  CAS  Google Scholar 

  32. P. Xing, C.Y. Wang, L. Zeng, et al., Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene, ACS Sustainable Chem. Eng., 7(2019), No. 10, p. 9498.

    Article  CAS  Google Scholar 

  33. G. Martin, C. Pätzold, and M. Bertau, Integrated process for lithium recovery from zinnwaldite, Int. J. Miner. Process., 160(2017), p. 8.

    Article  CAS  Google Scholar 

  34. X. Ma, J. Yang, H.W. Ma, and C.J. Liu, Hydrothermal extraction of potassium from potassic quartz syenite and preparation of aluminum hydroxide, Int. J. Miner. Process., 147(2016), p. 10.

    Article  CAS  Google Scholar 

  35. Z.Q. Zhang and R.Z. Yuan, Study on dehydroxylation process of kaolinite and its structural change, Bull. Chin. Ceram. Soc., 1993, No. 6, p. 37.

  36. S.Q. Su, H.W. Ma, and X.Y. Chuan, Hydrothermal decomposition of K-feldspar in KOH-NaOH-H2O medium, Hydrometallurgy, 156(2015), p. 47.

    Article  CAS  Google Scholar 

  37. M.K. Naskar, D. Kundu, and M. Chatterjee, Effect of process parameters on surfactant-based synthesis of hydroxy sodalite particles, Mater. Lett., 65(2011), No. 3, p. 436.

    Article  CAS  Google Scholar 

  38. N.N. Xue, Y.M. Zhang, T. Liu, J. Huang, and Q.S. Zheng, Effects of hydration and hardening of calcium sulfate on muscovite dissolution during pressure acid leaching of black shale, J. Cleaner Prod., 149(2017), p. 989.

    Article  CAS  Google Scholar 

  39. N. Vieceli, F.O. Durão, C. Guimarães, C.A. Nogueira, M.F.C. Pereira, and F. Margarido, Kinetic approach to the study of froth flotation applied to a lepidolite ore, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 731.

    Article  CAS  Google Scholar 

  40. H. Li, J. Eksteen, and G. Kuang, Recovery of lithium from mineral resources: State-of-the-art and perspectives — A review, Hydrometallurgy, 189(2019), art. No. 105129.

  41. P. Xing, C.Y. Wang, L. Wang, B.Z. Ma, Y.Q. Chen, and G.D. Wang, Clean and efficient process for the extraction of rubidium from granitic rubidium ore, J. Cleaner Prod., 196(2018), p. 64.

    Article  CAS  Google Scholar 

  42. L.M. Zeng and Z.B. Li, Solubility and modeling of sodium aluminosilicate in NaOH-NaAl(OH)4 solutions and its application to desilication, Ind. Eng. Chem. Res., 51(2012), No. 46, p. 15193.

    Article  CAS  Google Scholar 

  43. L.N. Shi, S. Ruan, J. Li, and A.R. Gerson, Desilication of low alumina to caustic liquor seeded with sodalite or cancrinite, Hydrometallurgy, 170(2017), p. 5.

    Article  CAS  Google Scholar 

  44. X.D. Liu, Y.P. Wang, X.M. Cui, Y. He, and J. Mao, Influence of synthesis parameters on NaA zeolite crystals, Powder Technol., 243(2013), p. 184.

    Article  CAS  Google Scholar 

  45. P. Xing, C.Y. Wang, B.Z. Ma, and Y.Q. Chen, Removal of Pb(II) from aqueous solution using a new zeolite-type absorbent: Potassium ore leaching residue, J. Environ. Chem. Eng., 6(2018), No. 6, p. 7138.

    Article  CAS  Google Scholar 

  46. L.L. Bai, K.X. Li, Y.B. Yan, X.L. Jia, J.M. Lee, and Y.H. Yang, Catalytic epoxidation of cis-cyclooctene over vanadium-exchanged faujasite zeolite catalyst with ionic liquid as cosolvent, ACS Sustainable Chem. Eng., 4(2016), No. 2, p. 437.

    Article  CAS  Google Scholar 

  47. H. Jin, J.L. Zhang, D.D. Wang, Q.K. Jing, Y.Q. Chen, and C.Y. Wang, Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature, Green Chem., 24(2022), No. 1, p. 152.

    Article  CAS  Google Scholar 

  48. D. Hu, B.Z. Ma, X. Li, et al., Efficient separation and recovery of gallium and indium in spent CIGS materials, Sep. Purif. Technol., 282(2022), art. No. 120087.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1802253 and 52034002), and the Fundamental Research Funds for the Central Universities, China (No. FRF-TT-19-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baozhong Ma or Chengyan Wang.

Additional information

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

12613_2022_2436_MOESM1_ESM.docx

Comprehensive utilization of complex rubidium ore resources: Mineral dissociation and selective leaching of rubidium and potassium

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Ma, B., Wang, C. et al. Comprehensive utilization of complex rubidium ore resources: Mineral dissociation and selective leaching of rubidium and potassium. Int J Miner Metall Mater 30, 857–867 (2023). https://doi.org/10.1007/s12613-022-2436-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2436-1

Keywords

Navigation