Skip to main content

Advertisement

Log in

Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Pyrolytic graphite (PG) with highly aligned graphene layers, present anisotropic electrical and thermal transport behavior, which is attractive in electronic, electrocatalyst and energy storage. Such pristine PG could meeting the limit of electrical conductivity (∼2.5 × 104 S·cm−1), although efforts have been made for achieving high-purity sp2 hybridized carbon. For manipulating the electrical conductivity of PG, a facile and efficient electrochemical strategy is demonstrated to enhance electrical transport ability via reversible intercalation/de-intercalation of AlCl 4 into the graphitic interlayers. With the stage evolution at different voltages, variable electrical and thermal transport behaviors could be achieved via controlling AlCl 4 concentrations in the PG because of substantial variation in the electronic density of states. Such evolution leads to decoupled electrical and thermal transport (opposite variation trend) in the in-plane and out-of-plane directions, and the in-plane electrical conductivity of the pristine PG (1.25 × 104 S·cm−1) could be massively promoted to 4.09 × 104 S·cm−1 (AlCl 4 intercalated PG), much better than the pristine bulk graphitic papers used for the electrical transport and electromagnetic shielding. The fundamental mechanism of decoupled transport feature and electrochemical strategy here could be extended into other anisotropic conductive bulks for achieving unusual behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Tu, J.X. Wang, S.J. Li, W.L. Song, M.Y. Wang, H.M. Zhu, and S.Q. Jiao, High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes, Nanoscale, 11(2019), No. 26, p. 12537.

    Article  CAS  Google Scholar 

  2. J.J. Peng, N.Q. Chen, R. He, Z.Y. Wang, S. Dai, and X.B. Jin, Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: A facile and mild graphitization method, Angew. Chem. Int. Ed., 56(2017), No. 7, p. 1751.

    Article  CAS  Google Scholar 

  3. W.L. Song, L.M. Veca, A. Anderson, M.S. Cao, L. Cao, and Y.P. Sun, Light-weight nanocomposite materials with enhanced thermal transport properties, Nanotechnol. Rev., 1(2012), No. 4, p. 363.

    Article  CAS  Google Scholar 

  4. M.S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys., 30(1981), No. 2, p. 139.

    Article  CAS  Google Scholar 

  5. J.O. Besenhard and H.P. Fritz, The electrochemistry of black carbons, Angew. Chem. Int. Ed., 22(1983), No. 12, p. 950.

    Article  Google Scholar 

  6. T. Placke, G. Schmuelling, R. Kloepsch, P. Meister, O. Fromm, P. Hilbig, H.W. Meyer, and M. Winter, In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications, Z. Anorg. Allg. Chem., 640(2014), No. 10, p. 1996.

    Article  CAS  Google Scholar 

  7. R. Matsumoto and Y. Okabe, Electrical conductivity and air stability of FeCl3, CuCl2, MoCl5, and SbCl5 graphite intercalation compounds prepared from flexible graphite sheets, Synth. Met., 212(2016), p. 62.

    Article  CAS  Google Scholar 

  8. H. Zabel, and S.A. Solin, Graphite Intercalation Compounds II: Transport and Electronic Properties, Springer, Berlin, 1992.

    Book  Google Scholar 

  9. L.M. Veca, M.J. Meziani, W. Wang, X. Wang, F.S. Lu, P.Y. Zhang, Y. Lin, R. Fee, J.W. Connell, and Y.P. Sun, Carbon nanosheets for polymeric nanocomposites with high thermal conductivity, Adv. Mater., 21(2009), No. 20, p. 2088.

    Article  CAS  Google Scholar 

  10. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140(1965), No. 4A, p. A1133.

    Article  Google Scholar 

  11. R. Nityananda, P. Hohenberg, and W. Kohn, Inhomogeneous electron gas, Resonance, 22(2017), No. 8, p. 809.

    Article  Google Scholar 

  12. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865.

    Article  CAS  Google Scholar 

  13. P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953.

    Article  Google Scholar 

  14. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132(2010), No. 15, art. No. 154104.

    Google Scholar 

  15. S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem., 32(2011), No. 7, p. 1456.

    Article  CAS  Google Scholar 

  16. H. Zabel, and S. Solin, Graphite Intercalation Compounds I: Structure and Dynamics. Springer, Berlin, 1990.

    Book  Google Scholar 

  17. J.H. Xu, D.E. Turney, A.L. Jadhav, and R.J. Messinger, Effects of graphite structure and ion transport on the electrochemical properties of rechargeable aluminum-graphite batteries, ACS Appl. Energy Mater., 2(2019), No. 11, p. 7799.

    Article  CAS  Google Scholar 

  18. S. Venkatachalam, M. Depriester, A.H. Sahraoui, B. Capoen, M.R. Ammar, and D. Hourlier, Thermal conductivity of kapton-derived carbon, Carbon, 114(2017), p. 134.

    Article  CAS  Google Scholar 

  19. M.C. Lin, M. Gong, B.G. Lu, Y.P. Wu, D.Y. Wang, M.Y. Guan, M. Angell, C.X. Chen, J. Yang, B.J. Hwang, and H.J. Dai, An ultrafast rechargeable aluminium-ion battery, Nature, 520(2015), No. 7547, p. 324.

    Article  CAS  Google Scholar 

  20. S.C. Jung, Y. Kang, D. Yoo, J.W. Choi, and Y. Han, Flexible few-layered graphene for the ultrafast rechargeable aluminumion battery, J. Phys. Chem. C, 120(2016), No. 13, p. 13384.

    Article  CAS  Google Scholar 

  21. R.D. Mckerracher, A. Holland, A. Cruden, and R.G.A. Wills, Comparison of carbon materials as cathodes for the aluminiumion battery, Carbon, 144(2019), p. 333.

    Article  CAS  Google Scholar 

  22. G.A. Elia, G. Greco, P.H. Kamm, F. García-Moreno, S. Raoux, and R. Hahn, Simultaneous X-ray diffraction and tomography operando investigation of aluminum/graphite batteries, Adv. Funct. Mater., 30(2020), No. 43, art. No. 2003913.

    Google Scholar 

  23. T. Fujita, H. Chen, K.T. Wang, C.L. He, Y.B. Wang, G. Dodbiba, and Y.Z. Wei, Reduction, reuse and recycle of spent Liion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179.

    Article  CAS  Google Scholar 

  24. P. Bhauriyal, A. Mahata, and B. Pathak, The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery, Phys. Chem. Chem. Phys., 19(2017), No. 11, p. 7980.

    Article  CAS  Google Scholar 

  25. Y. Sui, C. Liu, R. Masse, and Z. Neale, Dual-ion batteries: the emerging alternative rechargeable batteries, Energy Storage Mater. 25(2020), p. 1.

    Article  Google Scholar 

  26. G.A. Elia, I. Hasa, G. Greco, T. Diemant, K. Marquardt, K. Hoeppner, R.J. Behm, A. Hoell, S. Passerini, and R. Hahn, Insights into the reversibility of aluminum graphite batteries, J. Mater. Chem. A, 5(2017), No. 20, p. 9682.

    Article  CAS  Google Scholar 

  27. B.Y. Ju, W.S. Yang, Q. Zhang, M. Hussain, Z.Y. Xiu, J. Qiao, and G.H. Wu, Research progress on the characterization and repair of graphene defects, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1179.

    Article  Google Scholar 

  28. S. Takahashi, N. Koura, S. Kohara, M.L. Saboungi, and L.A. Curtiss, Technological and scientific issues of room-temperature molten salts, Plasmas Ions, 2(1999), No. 3–4, p. 91.

    Article  CAS  Google Scholar 

  29. H.B. Yang, L. Wu, B. Jiang, B. Lei, M. Yuan, H.M. Xie, A. Atrens, J.F. Song, G.S. Huang, and F.S. Pan, Discharge properties of Mg-Sn-Y alloys as anodes for Mg-air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705.

    Article  CAS  Google Scholar 

  30. H. Kim, J. Hong, G. Yoon, H. Kim, K.Y. Park, M.S. Park, W.S. Yoon, and K. Kang, Sodium intercalation chemistry in graphite, Energy Environ. Sci., 8(2015), No. 10, p. 2963.

    Article  CAS  Google Scholar 

  31. A.L. Patterson, The scherrer formula for X-ray particle size determination, Phys. Rev., 56(1939), No. 10, p. 978.

    Article  CAS  Google Scholar 

  32. T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel, H.W. Meyer, S. Passerini, and M. Winter, Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells, J. Electrochem. Soc., 159(2012), No. 11, p. A1755.

    Article  CAS  Google Scholar 

  33. M. Angell, C.J. Pan, Y.M. Rong, C.Z. Yuan, M.C. Lin, B.J. Hwang, and H.J. Dai, High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte, PNAS, 114(2017), No. 5, p. 834.

    Article  CAS  Google Scholar 

  34. X.L. Zhou, Q.R. Liu, C.L. Jiang, B.F. Ji, X.L. Ji, Y.B. Tang, and H.M. Cheng, Strategies towards low-cost dual-ion batteries with high performance, Angew. Chem. Int. Ed., 59(2020), No. 10, p. 3802.

    Article  CAS  Google Scholar 

  35. Q. Jiang, W.Q. Zhang, J.C. Zhao, P.H. Rao, and J.F. Mao, Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1194.

    Article  CAS  Google Scholar 

  36. Q.W. Wei, S.F. Pei, X.T. Qian, H.P. Liu, Z.B. Liu, W.M. Zhang, T.Y. Zhou, Z.C. Zhang, X.F. Zhang, H.M. Cheng, and W.C. Ren, Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film, Adv. Mater., 32(2020), No. 14, art. No. 1907411.

    Google Scholar 

  37. M.L. Yang, Q. Wei, J.J. Li, Y. Wang, H.F. Guo, L.Y. Gao, L. Huang, X.D. He, Y.B. Li, and Y. Yuan, Flexible composite carbon films prepared by a pancake-making method for electromagnetic interference shielding, Adv. Mater. Interfaces, 7(2020), No. 7, art. No. 1901815.

    Google Scholar 

  38. Y.H. Liu, K.Y. Zhang, Y.L. Mo, L. Zhu, B.W. Yu, F. Chen, and Q. Fu, Hydrated aramid nanofiber network enhanced flexible expanded graphite films towards high EMI shielding and thermal properties, Compos. Sci. Technol., 168(2018), p. 28.

    Article  CAS  Google Scholar 

  39. E.Z. Zhou, J.B. Xi, Y.J. Liu, Z. Xu, Y. Guo, L. Peng, W.W. Gao, J. Ying, Z.C. Chen, and C. Gao, Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding, Nanoscale, 9(2017), No. 47, p. 18613.

    Article  CAS  Google Scholar 

  40. D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, and Z.M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding, Adv. Funct. Mater., 25(2015), No. 4, p. 559.

    Article  CAS  Google Scholar 

  41. W.L. Song, X.T. Guan, L.Z. Fan, W.Q. Cao, C.Y. Wang, Q.L. Zhao, and M.S. Cao, Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding, J. Mater. Chem. A, 3(2015), No. 5, p. 2097.

    Article  CAS  Google Scholar 

  42. B. Shen, W.T. Zhai, and W.G. Zheng, Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding, Adv. Funct. Mater., 24(2014), No. 28, p. 4542.

    Article  CAS  Google Scholar 

  43. W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li, C.Y. Wang, and H.F. Ju, Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding, Carbon, 77(2014), p. 130.

    Article  CAS  Google Scholar 

  44. W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, and L.Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding, Carbon, 66(2014), p. 67.

    Article  CAS  Google Scholar 

  45. W.L. Song, C.C. Gong, H.M. Li, X.D. Cheng, M.J. Chen, X.J. Yuan, H.S. Chen, Y.Z. Yang, and D.N. Fang, Graphene-based sandwich structures for frequency selectable electromagnetic shielding, ACS Appl. Mater. Interfaces, 9(2017), No. 41, p. 36119.

    Article  CAS  Google Scholar 

  46. M.H. Al-Saleh and U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites, Carbon, 47(2009), No. 7, p. 1738.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (No. 2018YFB0104400), the National Natural Science Foundation of China (Nos. 52074036, 51725401, and 51874019), and Beijing Municipal Science and Technology Commission (No. Z191100002719007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haosen Chen or Weili Song.

Additional information

Conflict of Interest

All authors disclose no relevant relationships.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, K., Li, N. et al. Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications. Int J Miner Metall Mater 30, 33–43 (2023). https://doi.org/10.1007/s12613-022-2416-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2416-5

Keywords

Navigation