Skip to main content

Advertisement

Log in

Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg−2Zn−0.8Sr−0.2Ca matrix composite reinforced by TiC nano-particles

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A low-alloyed Mg−2Zn−0.8Sr−0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic, and then the as-cast composite was hot extruded. The results indicated that the volume fraction of dynamical recrystallization and the recrystallized grain size have a certain decline at lower extrusion temperature or rate. The finest grain size of ∼0.30 µm is obtained in the sample extruded at 200°C and 0.1 mm/s. The as-extruded sample displays a strong basal texture intensity, and the basal texture intensity increases to 5.937 mud while the extrusion temperature increases from 200 to 240°C. The ultra-high mechanical properties (ultimate tensile strength of 480.2 MPa, yield strength of 462 MPa) are obtained after extrusion at 200°C with a rate of 0.1 mm/s. Among all strengthening mechanisms for the present composite, the grain refinement contributes the most to the increase in strength. A mixture of cleavage facets and dimples were observed in the fracture surfaces of three as-extruded nanocomposites, which explain a mix of brittle-ductile fracture way of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1.

    Article  CAS  Google Scholar 

  2. H.C. Pan, R. Kang, J.R. Li, H.B. Xie, Z.R. Zeng, Q.Y. Huang, C.L. Yang, Y.P. Ren, and G.W. Qin, Mechanistic investigation of a low-alloy Mg−Ca-based extrusion alloy with high strength-ductility synergy, Acta Mater., 186(2020), p. 278.

    Article  CAS  Google Scholar 

  3. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang, What is going on in magnesium alloys?, J. Mater. Sci. Technol., 34(2018), No. 2, p. 245.

    Article  Google Scholar 

  4. G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567.

    Article  Google Scholar 

  5. M. Shahin, K. Munir, C.E. Wen, and Y.C. Li, Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives, Acta Biomater., 96(2019), p. 1.

    Article  CAS  Google Scholar 

  6. K.B. Nie, Z.H. Zhu, P. Munroe, K.K. Deng, and J.G. Han, Effect of extrusion speed on mixed grain microstructure and tensile properties of a Mg−2.9Zn−1.1Ca−0.5Mn nanocomposite reinforced by a low mass fraction of TiCp, Mater. Sci. Eng. A, 796(2020), art. No. 140223.

  7. H.Y. Jeong, B. Kim, S.G. Kim, H.J. Kim, and S.S. Park, Effect of Ce addition on the microstructure and tensile properties of extruded Mg−Zn−Zr alloys, Mater. Sci. Eng. A, 612(2014), p. 217.

    Article  CAS  Google Scholar 

  8. C.J. Bettles, M.A. Gibson, and K. Venkatesan, Enhanced age-hardening behaviour in Mg−4 wt.% Zn micro-alloyed with Ca, Scripta Mater., 51(2004), No. 3, p. 193.

    Article  CAS  Google Scholar 

  9. R. Alizadeh, J.Y. Wang, and J. LLorca, Precipitate strengthening of pyramidal slip in Mg−Zn alloys, Mater. Sci. Eng. A, 804(2021), art. No. 140697.

  10. T. Nakata, T. Mezaki, R. Ajima, C. Xu, K. Oh-Ishi, K. Shimizu, S. Hanaki, T.T. Sasaki, K. Hono, and S. Kamado, High-speed extrusion of heat-treatable Mg−Al−Ca−Mn dilute alloy, Scripta Mater., 101(2015), p. 28.

    Article  CAS  Google Scholar 

  11. X. Meng, Z.T. Jiang, S.J. Zhu, and S.K. Guan, Effects of Sr addition on microstructure, mechanical and corrosion properties of biodegradable Mg−Zn−Ca alloy, J. Alloys Compd., 838(2020), art. No. 155611.

  12. J.Y. Wang, Y.W. Chen, Z. Chen, J. Llorca, and X.Q. Zeng, Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests, Acta Mater., 217(2021), art. No. 117151.

  13. Y. Liu, N. Li, M. Arul Kumar, S. Pathak, J. Wang, R.J. McCabe, N.A. Mara, and C.N. Tomé, Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars, Acta Mater., 135(2017), p. 411.

    Article  CAS  Google Scholar 

  14. X.F. Sun, C.J. Wang, K.K. Deng, K.B. Nie, X.C. Zhang, and X.Y. Xiao, High strength SiCp/AZ91 composite assisted by dynamic precipitated Mg17Al12 phase, J. Alloys Compd., 732(2018), p. 328.

    Article  CAS  Google Scholar 

  15. K.K. Deng, J.Y. Shi, C.J. Wang, X.J. Wang, Y.W. Wu, K.B. Nie, and K. Wu, Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite, Compos. A: Appl. Sci. Manuf., 43(2012), No. 8, p. 1280.

    Article  CAS  Google Scholar 

  16. K.B. Nie, X.J. Wang, K.K. Deng, X.S. Hu, and K. Wu, Magnesium matrix composite reinforced by nanoparticles — A review, J. Magnes. Alloys, 9(2021), No. 1, p. 57.

    Article  CAS  Google Scholar 

  17. C.P. Li, Z.G. Wang, H.Y. Wang, X. Zhu, M. Wu, and Q.C. Jiang, Fabrication of nano-SiC particulate reinforced Mg-8Al-1Sn composites by powder metallurgy combined with hot extrusion, J. Mater. Eng. Perform., 25(2016), No. 11, p. 5049.

    Article  CAS  Google Scholar 

  18. H. Yu, H.P. Zhou, Y. Sun, L.L. Ren, Z.P. Wan, and L.X. Hu, Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy, Adv. Powder Technol., 29(2018), No. 12, p. 3241.

    Article  CAS  Google Scholar 

  19. G.K. Meenashisundaram and M. Gupta, Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium, J. Alloys Compd., 593(2014), p. 176.

    Article  CAS  Google Scholar 

  20. X.J. Wang, K. Wu, H.F. Zhang, W.X. Huang, H. Chang, W.M. Gan, M.Y. Zheng, and D.L. Peng, Effect of hot extrusion on the microstructure of a particulate reinforced magnesium matrix composite, Mater. Sci. Eng. A, 465(2007), No. 1–2, p. 78.

    Google Scholar 

  21. Y.C. Guo, K.B. Nie, X.K. Kang, K.K. Deng, J.G. Han, and Z.H. Zhu, Achieving high-strength magnesium matrix nanocomposite through synergistical effect of external hybrid (SiC+TiC) nanoparticles and dynamic precipitated phase, J. Alloys Compd., 771(2019), p. 847.

    Article  CAS  Google Scholar 

  22. F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669.

    Article  CAS  Google Scholar 

  23. Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30.

    Article  CAS  Google Scholar 

  24. X.G. Qiao, T. Ying, M.Y. Zheng, E.D. Wei, K. Wu, X.S. Hu, W.M. Gan, H.G. Brokmeier, and I.S. Golovin, Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP), Mater. Charact., 121(2016), p. 222.

    Article  CAS  Google Scholar 

  25. X.Y. Tao, J. Du, Y.C. Yang, Y.P. Li, Y. Xia, Y.P. Gan, H. Huang, W.K. Zhang, and X.D. Li, TiC nanorods derived from cotton fibers: Chloride-assisted VLS growth, structure, and mechanical properties, Cryst. Growth Des., 11(2011), No. 10, p. 4422.

    Article  CAS  Google Scholar 

  26. M.J. Shen, W.F. Ying, X.J. Wang, M.F. Zhang, and K. Wu, Development of high performance magnesium matrix nanocomposites using nano-SiC particulates as reinforcement, J. Mater. Eng. Perform., 24(2015), No. 10, p. 3798.

    Article  CAS  Google Scholar 

  27. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement, J. Nanomater., 2011(2011), art. No. 642980.

  28. M. Rashad, F.S. Pan, W. Guo, H. Lin, M. Asif, and M. Irfan, Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg-3Al-1Zn alloy, Mater. Charact., 106(2015), p. 382.

    Article  CAS  Google Scholar 

  29. S.S. Shuai, E.Y. Guo, J. Wang, A.B. Phillion, T. Jing, Z.M. Ren, and P.D. Lee, Synchrotron tomographic quantification of the influence of Zn concentration on dendritic growth in Mg−Zn alloys, Acta Mater., 156(2018), p. 287.

    Article  CAS  Google Scholar 

  30. K.B. Nie, Z.H. Zhu, P. Munroe, K.K. Deng, and J.G. Han, The effect of Zn/Ca ratio on the microstructure, texture and mechanical properties of dilute Mg−Zn−Ca−Mn alloys that exhibit superior strength, J. Mater. Sci., 55(2020), No. 8, p. 3588.

    Article  CAS  Google Scholar 

  31. K.B. Nie, Z.H. Zhu, P. Munroe, K.K. Deng, and J.G. Han, Microstructure, tensile properties and work hardening behavior of an extruded Mg−Zn−Ca−Mn magnesium alloy, Acta Metall. Sin. Engl. Lett., 33(2020), No. 7, p. 922.

    Article  CAS  Google Scholar 

  32. B.C. Zhou, S.L. Shang, Y. Wang, and Z.K. Liu, Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study, Acta Mater., 103(2016), p. 573.

    Article  CAS  Google Scholar 

  33. Y.N. Wang and J.C. Huang, Texture analysis in hexagonal materials, Mater. Chem. Phys., 81(2003), No. 1, p. 11.

    Article  CAS  Google Scholar 

  34. A. Yang, K.B. Nie, K.K. Deng, and Y.N. Li, Improved tensile properties of low-temperature and low-speed extruded Mg−χAl−(4.8−χ)Ca−0.6Mn alloys, J. Mater. Res. Technol., 9(2020), No. 5, p. 11717.

    Article  CAS  Google Scholar 

  35. Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, and S.W. Xu, Development of high-strength, low-cost wrought Mg−2.5 mass% Zn alloy through micro-alloying with Ca and La, Mater. Des., 85(2015), p. 549.

    Article  CAS  Google Scholar 

  36. D.K. Guan, W.M. Rainforth, L. Ma, B. Wynne, and J.H. Gao, Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy, Acta Mater., 126(2017), p. 132.

    Article  CAS  Google Scholar 

  37. M. Habibnejad-Korayem, R. Mahmudi, and W.J. Poole, Work hardening behavior of Mg-based nano-composites strengthened by Al2O3 nano-particles, Mater. Sci. Eng. A, 567(2013), p. 89.

    Article  CAS  Google Scholar 

  38. G.K. Meenashisundaram and M. Gupta, Synthesis and characterization of high performance low volume fraction TiC reinforced Mg nanocomposites targeting biocompatible/structural applications, Mater. Sci. Eng. A, 627(2015), p. 306.

    Article  CAS  Google Scholar 

  39. K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, and X.S. Hu, Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration, J. Alloys Compd., 509(2011), No. 35, p. 8664.

    Article  CAS  Google Scholar 

  40. W.J. Li, K.K. Deng, X. Zhang, C.J. Wang, J.W. Kang, K.B. Nie, and W. Liang, Microstructures, tensile properties and work hardening behavior of SiCp/Mg−Zn−Ca composites, J. Alloys Compd., 695(2017), p. 2215.

    Article  CAS  Google Scholar 

  41. S.J. Shang, K.K. Deng, K.B. Nie, J.C. Li, S.S. Zhou, F.J. Xu, and J.F. Fan, Microstructure and mechanical properties of SiCp/Mg−Al−Zn composites containing Mg17Al12 phases processed by low-speed extrusion, Mater. Sci. Eng. A, 610(2014), p. 243.

    Article  CAS  Google Scholar 

  42. X. Zhang, K.K. Deng, W.J. Li, H.X. Wang, K.B. Nie, F.J. Xu, and W. Liang, Microstructure and mechanical properties of Mg−Al−Ca alloy influenced by SiCp size, Mater. Sci. Eng. A, 647(2015), p. 15.

    Article  CAS  Google Scholar 

  43. K.B. Nie, Y.C. Guo, K.K. Deng, and X.K. Kang, High strength TiCp/Mg−Zn−Ca magnesium matrix nanocomposites with improved formability at low temperature, J. Alloys Compd., 792(2019), p. 267.

    Article  CAS  Google Scholar 

  44. X.J. Wang, K.B. Nie, X.S. Hu, Y.Q. Wang, X.J. Sa, and K. Wu, Effect of extrusion temperatures on microstructure and mechanical properties of SiCp/Mg−Zn−Ca composite, J. Alloys Compd., 532(2012), p. 78.

    Article  CAS  Google Scholar 

  45. J.W. Kang, X.F. Sun, K.K. Deng, F.J. Xu, X. Zhang, and Y. Bai, High strength Mg−9Al serial alloy processed by slow extrusion, Mater. Sci. Eng. A, 697(2017), p. 211.

    Article  CAS  Google Scholar 

  46. A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect, Mater. Sci. Eng. A, 531(2012), p. 112.

    Article  CAS  Google Scholar 

  47. K.B. Nie, K.K. Deng, X.J. Wang, T. Wang, and K. Wu, Influence of SiC nanoparticles addition on the microstructural evolution and mechanical properties of AZ91 alloy during isothermal multidirectional forging, Mater. Charact., 124(2017), p. 14.

    Article  CAS  Google Scholar 

  48. K.B. Nie, Z.H. Zhu, K.K. Deng, and J.G. Han, Effect of extrusion temperature on microstructure and mechanical properties of a low-alloying and ultra-high strength Mg−Zn−Ca−Mn matrix composite containing trace TiC nanoparticles, J. Magnes. Alloys, 8(2020), No. 3, p. 676.

    Article  CAS  Google Scholar 

  49. Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, and S.W. Xu, The microstructure, texture and mechanical properties of extruded Mg−5.3Zn−0.2Ca−0.5Ce (wt%) alloy, Mater. Sci. Eng. A, 620(2015), p. 164.

    Article  Google Scholar 

  50. M. Habibnejad-Korayem, R. Mahmudi, and W.J. Poole, Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles, Mater. Sci. Eng. A, 519(2009), No. 1–2, p. 198.

    Article  Google Scholar 

  51. K.B. Nie, J.G. Han, K.K. Deng, and Z.H. Zhu, Simultaneous improvements in tensile strength and elongation of a Mg−2Zn−0.8Sr−0.2Ca alloy by a combination of microalloying and low content of TiC nanoparticles, Mater. Lett., 260(2020), art. No. 126951.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51771129, 51401144, and 51771128); the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China; the Natural Science Foundation of Shanxi Province, China (Nos. 2015021067 and 201601D011034); the Projects of International Cooperation in Shanxi, China (No. 201703D421039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaibo Nie.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Nie, K., Deng, K. et al. Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg−2Zn−0.8Sr−0.2Ca matrix composite reinforced by TiC nano-particles. Int J Miner Metall Mater 29, 1981–1990 (2022). https://doi.org/10.1007/s12613-021-2353-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2353-8

Keywords

Navigation