Skip to main content
Log in

Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Reverse flotation desilication is an indispensable step for obtaining high-grade fluorapatite. In this work, dodecyltrimethylammonium bromide (DTAB) is recommended as an efficient collector for the reverse flotation separation of quartz from fluorapatite. Its collectivity for quartz and selectivity for fluorapatite were also compared with figures corresponding to the conventional collector dodecylamine hydrochloride (DAC) via microflotation experiments. The adsorption behaviors of DTAB and DAC on minerals were systematically investigated with surface chemical analyses, such as contact angle determination, zeta potential detection, and adsorption density measurement. The results revealed that compared to DAC, DTAB displayed a similar and strong collectivity for quartz, and it showed a better selectivity (or worse collectivity) for fluorapatite, resulting in a high-efficiency separation of the two minerals. The surface chemical analysis results showed that the adsorption ability of DTAB on the quartz surface was as strong as that of DAC, whereas the adsorption amount of DTAB on the fluorapatite surface was much lower than that of DAC, which is associated with the flotation performance. During the floatation separation of the actual ore, 8wt% fluorapatite with a higher grade can be obtained using DTAB in contrast to DAC. Therefore, DTAB is a promising collector for the high-efficiency purification and sustainable utilization of valuable fluorapatite recourses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Santana, C.R. Duarte, C.H. Ataíde, and M.A.S. Barrozo, Flotation selectivity of phosphate ore: Effects of particle size and reagent concentration, Sep. Sci. Technol., 46(2011), No. 9, p. 1511.

    Article  CAS  Google Scholar 

  2. R.C. Santana, A.C.C. Farnese, M.C.B. Fortes, C.H. Ataíde, and M.A.S. Barrozo, Influence of particle size and reagent dosage on the performance of apatite flotation, Sep. Purif. Technol., 64(2008), No. 1, p. 8.

    Article  CAS  Google Scholar 

  3. J.A.E. de Carvalho, P.R.G. Brandão, A.B. Henriques, P.S. de Oliveira, R.Z.L. Cançado, and G.R. de Silva, Selective flotation of apatite from micaceous minerals using patauá palm tree oil collector, Miner. Eng., 156(2020), art. No. 106474.

  4. R.H.E.M. Koppelaar and H.P. Weikard, Assessing phosphate rock depletion and phosphorus recycling options, Global Environ. Change, 23(2013), No. 6, p. 1454.

    Article  Google Scholar 

  5. M.C. Fuerstenau, G. Jameson, and R.H. Yoon, Froth Flotation: A Century of Innovation, Society for Mining, Metallurgy, and Exploration. Inc., Littleton, 2007.

    Google Scholar 

  6. A. Amirech, M. Bouhenguel, and S. Kouachi, Two-stage reverse flotation process for removal of carbonates and silicates from phosphate ore using anionic and cationic collectors, Arab. J. Geosci., 11(2018), No. 19, p. 593.

    Article  Google Scholar 

  7. X. Zheng and R.W. Smith, Dolomite depressants in the flotation of apatite and collophane from dolomite, Miner. Eng., 10(1997), No. 5, p. 537.

    Article  CAS  Google Scholar 

  8. F. Zhou, L.X. Wang, Z.H. Xu, Q.X. Liu, and R. Chi, Reactive oily bubble technology for flotation of apatite, dolomite and quartz, Int. J. Miner. Process., 134(2015), p. 74.

    Article  CAS  Google Scholar 

  9. Y.Y. Ruan, D.S. He, and R. Chi, Review on beneficiation techniques and reagents used for phosphate ores, Minerals, 9(2019), No. 4, art. No. 253.

  10. W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571.

    Article  CAS  Google Scholar 

  11. C. Li, C.Y. Sun, Y.L. Wang, Y.F. Fu, P.Y. Xu, and W.Z. Yin, Research on new beneficiation process of low-grade magnesite using vertical roller mill, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 432.

    Article  CAS  Google Scholar 

  12. Y.Y. Ruan, Z.Q. Zhang, H.H. Luo, C.Q. Xiao, F. Zhou, and R. Chi, Ambient temperature flotation of sedimentary phosphate ore using cottonseed oil as a collector, Minerals, 7(2017), No. 5, art. No. 65.

  13. A.Z.M. Abouzeid, A.T. Negm, and D.A. Elgillani, Upgrading of calcareous phosphate ores by flotation: Effect of ore characteristics, Int. J. Miner. Process., 90(2009), No. 1–4, p. 81.

    Article  CAS  Google Scholar 

  14. Y.J. Li, Research and practice in phosphate beneficiation in Yunnan Province, J. Wuhan Inst. Technol., 33(2011), No. 2, p. 12.

    Google Scholar 

  15. A.Z.M. Abouzeid, Physical and thermal treatment of phosphate ores—An overview, Int. J. Miner. Process., 85(2008), No. 4, p. 59.

    Article  CAS  Google Scholar 

  16. H.S. Hanna, The role of cationic surfactants in the selective flotation of phosphate ore constituents, Powder Technol., 12(1975), No. 1, p. 57.

    Article  CAS  Google Scholar 

  17. A.F. Rosa and J. Rubio, On the role of nanobubbles in particle-bubble adhesion for the flotation of quartz and apatitic minerals, Miner. Eng., 127(2018), p. 178.

    Article  CAS  Google Scholar 

  18. A.T. Salah, Y. Roe-Hoan, and S. Dongcheol, A comparison of anionic and cationic flotation of a siliceous phosphate rock in a column flotation cell, Min. Sci. Technol. China, 21(2011), No. 1, p. 147.

    Article  CAS  Google Scholar 

  19. Y. Han, S. Han, B. Kim, J. Yang, J. Choi, K. Kim, K.S. You, and H. Kim, Flotation separation of quartz from apatite and surface forces in bubble-particle interactions: Role of pH and cationic amine collector contents, J. Ind. Eng. Chem., 70(2019), p. 107.

    Article  CAS  Google Scholar 

  20. X.B. Li, Q. Zhang, B. Hou, J.J. Ye, S. Mao, and X.H. Li, Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms, Powder Technol., 318(2017), p. 224.

    Article  CAS  Google Scholar 

  21. Z.Q. Huang, C. Cheng, K. Li, S.Y. Zhang, J.R. Zhou, W.H. Luo, Z.W. Liu, W.W. Qin, H.L. Wang, Y.J. Hu, G.C. He, X.Y. Yu, T.S. Qiu, and W. Fu, Reverse flotation separation of quartz from phosphorite ore at low temperatures by using an emerging Gemini surfactant as the collector, Sep. Purif. Technol., 246(2020), art. No. 116923.

  22. Z.Q. Huang, C. Cheng, Z.W. Liu, H.Q. Zeng, B. Feng, H. Zhong, W.H. Luo, Y.J. Hu, Z.Q. Guo, G.C. He, and W. Fu, Utilization of a new Gemini surfactant as the collector for the reverse froth flotation of phosphate ore in sustainable production of phosphate fertilizer, J. Cleaner Prod., 221(2019), p. 108.

    Article  CAS  Google Scholar 

  23. Z. Cao, Y.D. Cao, Q.Q. Qu, J.S. Zhang, and Y.F. Mu, Separation of bastnäsite from fluorite using ethylenediamine tetraacetic acid as depressant, Miner. Eng., 134(2019), p. 134.

    Article  CAS  Google Scholar 

  24. O. Salmani Nuri, E. Allahkarami, M. Irannajad, and A. Abdollahzadeh, Estimation of selectivity index and separation efficiency of copper flotation process using ANN model, Geosystem Eng., 20(2017), No. 1, p. 41.

    Article  CAS  Google Scholar 

  25. J. Drelich, Guidelines to measurements of reproducible contact angles using a sessile-drop technique, Surf. Innov., 1(2013), No. 4, p. 248.

    Article  CAS  Google Scholar 

  26. B. Yang, W.Z. Yin, Z.L. Zhu, H.R. Sun, Q.Y. Sheng, Y.F. Fu, J. Yao, and K. Zhao, Differential adsorption of hydrolytic polymaleic anhydride as an eco-friendly depressant for the selective flotation of apatite from dolomite, Sep. Purif Technol., 256(2021), art. No. 117803.

  27. B. Yang, H.R. Sun, D.H. Wang, W.Z. Yin, S.H. Cao, Y.L. Wang, Z.L. Zhu, K. Jiang, and J. Yao, Selective adsorption of a new depressant Na2ATP on dolomite: Implications for effective separation of magnesite from dolomite via froth flotation, Sep. Purif. Technol., 250(2020), art. No. 117278.

  28. Y.X. Yu, L.Q. Ma, M.L. Cao, and Q. Liu, Slime coatings in froth flotation: A review, Miner. Eng., 114(2017), p. 26.

    Article  CAS  Google Scholar 

  29. B. Yang, Z.L. Zhu, H.R. Sun, W.Z. Yin, J. Hong, S.H. Cao, Y. Tang, C. Zhao, and J. Yao, Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant, Miner. Eng., 156(2020), art. No. 106492.

  30. Z.L. Zhu, D.H. Wang, B. Yang, W.Z. Yin, M.S. Ardakani, J. Yao, and J.W. Drelich, Effect of nano-sized roughness on the flotation of magnesite particles and particle-bubble interactions, Miner. Eng., 151(2020), art. No. 106340.

  31. H.R. Sun, B. Yang, Z.L. Zhu, W.Z. Yin, Q.Y. Sheng, Y. Hou, and J. Yao, New insights into selective-depression mechanism of novel depressant EDTMPS on magnesite and quartz surfaces: Adsorption mechanism, DFT calculations, and adsorption model, Miner. Eng., 160(2021), art. No. 106660.

  32. J.W. Drelich, Contact angles: From past mistakes to new developments through liquid-solid adhesion measurements, Adv. Colloid Interface Sci., 267(2019), p. 1.

    Article  CAS  Google Scholar 

  33. J.W. Drelich, L. Boinovich, E. Chibowski, C. Della Volpe, L. Holysz, A. Marmur, and S. Siboni, Contact angles: History of over 200 years of open questions, Surf. Innov., 8(2020), No. 1–2, p. 3.

    Article  Google Scholar 

  34. Y.F. Fu, W.Z. Yin, B. Yang, C. Li, Z.L. Zhu, and D. Li, Effect of sodium alginate on reverse flotation of hematite and its mechanism, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1113.

    Article  CAS  Google Scholar 

  35. Y.F. Fu, W.Z. Yin, X.S. Dong, C.Y. Sun, B. Yang, J. Yao, H.L. Li, C. Li, and H. Kim, New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1898.

    Article  CAS  Google Scholar 

  36. Z.L. Zhu, W.Z. Yin, D.H. Wang, H.R. Sun, K.Q. Chen, and B. Yang, The role of surface roughness in the wettability and float-ability of quartz particles, Appl. Surf. Sci., 527(2020), art. No. 146799.

  37. G.B. Abaka-Wood, J. Addai-Mensah, and W. Skinner, A study of flotation characteristics of monazite, hematite, and quartz using anionic collectors, Int. J. Miner. Process., 158(2017), p. 55.

    Article  CAS  Google Scholar 

  38. G.B. Abaka-Wood, J. Addai-Mensah, and W. Skinner, Selective flotation of rare earth oxides from hematite and quartz mixtures using oleic acid as a collector, Int. J. Miner. Process., 169(2017), p. 60.

    Article  CAS  Google Scholar 

  39. J. Xie, Q. Zhang, S. Mao, X.H. Li, Z.H. Shen, and L.J. Li, Anisotropic crystal plane nature and wettability of fluorapatite, Appl. Surf. Sci., 493(2019), p. 294.

    Article  CAS  Google Scholar 

  40. M.Y. Li, J. Liu, Y.M. Hu, X.P. Gao, Q.D. Yuan, and F.G. Zhao, Investigation of the specularite/chlorite separation using chitosan as a novel depressant by direct flotation, Carbohydr. Polym., 240(2020), art. No. 116334.

  41. W.J. Zhang, Z.T. Feng, H. Mulenga, W. Sun, J. Cao, and Z.Y. Gao, Synthesis of a novel collector based on selective nitrogen coordination for improved separation of galena and sphalerite against pyrite, Chem. Eng. Sci., 226(2020), art. No. 115860.

  42. C. Liu, W.C. Zhang, S.X. Song, and H.Q. Li, A novel method to improve carboxymethyl cellulose performance in the flotation of talc, Miner. Eng., 131(2019), p. 23.

    Article  CAS  Google Scholar 

  43. B. Yang, W.Z. Yin, J. Yao, Q.Y. Sheng, and Z.L. Zhu, Role of decaethoxylated stearylamine in the selective flotation of hornblende and siderite: An experimental and molecular dynamics simulation study, Appl. Surf. Sci., 571(2022), art. No. 151177.

  44. Y.P. Niu, C.Y. Sun, W.Z. Yin, X.R. Zhang, H.F. Xu, and X. Zhang, Selective flotation separation of andalusite and quartz and its mechanism, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1059.

    Article  CAS  Google Scholar 

  45. B.B. Luo, Y.M. Zhu, C.Y. Sun, Y.J. Li, and Y.X. Han, The flotation behavior and adsorption mechanisms of 2-((2-(decyloxy)ethyl)amino)lauric acid on quartz surface, Miner. Eng., 117(2018), p. 121.

    Article  CAS  Google Scholar 

  46. X.R. Zhang, Y.G. Zhu, Y. Xie, Y.B. Shang, and G.B. Zheng, A novel macromolecular depressant for reverse flotation: Synthesis and depressing mechanism in the separation of hematite and quartz, Sep. Purif. Technol., 186(2017), p. 175.

    Article  CAS  Google Scholar 

  47. X.M. Jiang, Q.J. Guo, H.Y. Li, J. Jiang, Y. Chen, and T. Xie, Photofoams and flotation mechanism of an azobenzene-based surfactant on quartz, Colloids Surf. A., 535(2017), p. 201.

    Article  CAS  Google Scholar 

  48. N. Nan, Y.M. Zhu, and Y.X. Han, Flotation performance and mechanism of α-Bromolauric acid on separation of hematite and fluorapatite, Miner. Eng., 132(2019), p. 162.

    Article  CAS  Google Scholar 

  49. Q.B. Cao, H. Zou, X.M. Chen, and S.M. Wen, Flotation selectivity of N-hexadecanoylglycine in the fluorapatite-dolomite system, Miner. Eng., 131(2019), p. 353.

    Article  CAS  Google Scholar 

  50. Z.Q. Huang, H. Zhong, S. Wang, L.Y. Xia, W.B. Zou, and G.Y. Liu, Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1,2-bis(dimethyl-dodecyl-ammonium bromide), Chem. Eng. J., 257(2014), p. 218.

    Article  CAS  Google Scholar 

  51. W. Lv, B. Bazin, D.S. Ma, Q.J. Liu, D. Han, and K.Y. Wu, Static and dynamic adsorption of anionic and amphoteric surfactants with and without the presence of alkali, J. Pet. Sci. Eng., 77(2011), No. 2, p. 209.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51974093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Rao or Zhanglei Zhu.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Huang, W., Rao, F. et al. Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite. Int J Miner Metall Mater 29, 446–454 (2022). https://doi.org/10.1007/s12613-021-2321-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2321-3

Keywords

Navigation