Skip to main content

Advertisement

Log in

Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). The alloy exerts excellent cycling durability (the capacity can be maintained at 328.3 mA·h·g−1 after 100 cycles for SIBs and 260 mA·h·g−1 for PIBs) and rate capability (199 mA·h·g−1 at 5 A·g−1 for SIBs and 148 mA·h·g−1 at 5 A·g−1 for PIBs) because of the smooth electron transport path, fast Na/K ion diffusion rate, and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy. This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries, and it also introduces broad application prospects for other electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Chen, Y. Cheng, Q.B. Zhang, C. Luo, H.Y. Li, Y. Wu, H.H. Zhang, X. Wang, H.D. Liu, X. He, J.J. Han, D.L. Peng, M.L. Liu, and M.S. Wang, Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co-doped hollow porous bowl-like carbon anodes, Adv. Funct. Mater., 31(2021), No. 1, art. No. 2007158.

  2. B. Chen, D.L. Chao, E.Z. Liu, M. Jaroniec, N.Q. Zhao, and S.Z. Qiao, Transition metal dichalcogenides for alkali metal ion batteries: Engineering strategies at the atomic level, Energy Environ. Sci., 13(2020), No. 4, p. 1096.

    Article  CAS  Google Scholar 

  3. J.C. Pramudita, D. Sehrawat, D. Goonetilleke, and N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries, Adv. Energy Mater., 7(2017), No. 24, art. No. 1602911.

  4. X.D. He, Z.H. Liu, J.Y. Liao, X. Ding, Q. Hu, L.N. Xiao, S. Wang, and C.H. Chen, A three-dimensional macroporous anti-mony@carbon composite as a high-performance anode material for potassium-ion batteries, J. Mater. Chem. A, 7(2019), No. 16, p. 9629.

    Article  CAS  Google Scholar 

  5. J. Zheng, Y. Yang, X.L. Fan, G.B. Ji, X. Ji, H.Y. Wang, S. Hou, M.R. Zachariah, and C.S. Wang, Extremely stable antimony-carbon composite anodes for potassium-ion batteries, Energy Environ. Sci., 12(2019), No. 2, p. 615.

    Article  CAS  Google Scholar 

  6. Y.L. An, Y. Tian, L.J. Ci, S.L. Xiong, J.K. Feng, and Y.T. Qian, Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries, ACS Nano, 12(2018), No. 12, p. 12932.

    Article  CAS  Google Scholar 

  7. G.H. Wang, X.H. Xiong, Z.H. Lin, C.H. Yang, Z. Lin, and M.L. Liu, Sb/C composite as a high-performance anode for sodium ion batteries, Electrochim. Acta, 242(2017), p. 159.

    Article  CAS  Google Scholar 

  8. J. Qin, T.S. Wang, D.Y. Liu, E.Z. Liu, N.Q. Zhao, C.S. Shi, F. He, L.Y. Ma, and C.N. He, A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode, Adv. Mater., 30(2018), No. 9, art. No. 1704670.

  9. P.X. Xiong, J.X. Wu, M.F. Zhou, and Y.H. Xu, Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries, ACS Nano, 14(2020), No. 1, p. 1018.

    Article  CAS  Google Scholar 

  10. J. Han, K.J. Zhu, P. Liu, Y.C. Si, Y.J. Chai, and L.F. Jiao, N-doped CoSb@C nanofibers as a self-supporting anode for highperformance K-ion and Na-ion batteries, J. Mater. Chem. A, 7(2019), No. 44, p. 25268.

    Article  CAS  Google Scholar 

  11. Y.P. Li, Q.B. Zhang, Y.F. Yuan, H.D. Liu, C.H. Yang, Z. Lin, and J. Lu, Surface amorphization of vanadium dioxide (B) for K-ion battery, Adv. Energy Mater., 10(2020), No. 23, art. No. 2000717.

  12. X.F. Ge, S.H. Liu, M. Qiao, Y.C. Du, Y.F. Li, J.C. Bao, and X.S. Zhou, Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers, Angew. Chem. Int. Ed., 58(2019), No. 41, p. 14578.

    Article  CAS  Google Scholar 

  13. M.C. Schulze, R.M. Belson, L.A. Kraynak, and A.L. Prieto, Electrodeposition of Sb/CNT composite films as anodes for Li-and Na-ion batteries, Energy Storage Mater., 25(2020), p. 572.

    Article  Google Scholar 

  14. X.W. Liu, M. Gao, H. Yang, X.W. Zhong, and Y. Yu, 2D sandwich-like nanosheets of ultrafine Sb nanoparticles anchored to graphene for high-efficiency sodium storage, Nano Res., 10(2017), No. 12, p. 4360.

    Article  CAS  Google Scholar 

  15. C. Nita, J. Fullenwarth, L. Monconduit, L. Vidal, and C. Matei Ghimbeu, Influence of carbon characteristics on Sb/carbon nanocomposites formation and performances in Na-ion batteries, Mater. Today Energy, 13(2019), p. 221.

    Article  Google Scholar 

  16. Q.Q. Yang, J. Zhou, G.Q. Zhang, C. Guo, M. Li, Y.C. Zhu, and Y.T. Qian, Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries, J. Mater. Chem. A, 5(2017), No. 24, p. 12144.

    Article  CAS  Google Scholar 

  17. Z.Y. Wang, K.Z. Dong, D. Wang, S.H. Luo, X. Liu, Y.G. Liu, Q. Wang, Y.H. Zhang, A.M. Hao, C.N. He, C.S. Shi, and N.Q. Zhao, Constructing N-Doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries, Chem. Eng. J., 384(2020), art. No. 123327.

  18. Z.Y. Wang, K.Z. Dong, D. Wang, S.H. Luo, Y.G. Liu, Q. Wang, Y.H. Zhang, A.M. Hao, C.S. Shi, and N.Q. Zhao, A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries, J. Mater. Chem. A, 7(2019), No. 23, p. 14309.

    Article  CAS  Google Scholar 

  19. Z.Y. Wang, C.Q. Duan, D. Wang, K.Z. Dong, S.H. Luo, Y.G. Liu, Q. Wang, Y.H. Zhang, and A.M. Hao, BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution, J. Colloid Interface Sci., 580(2020), p. 429.

    Article  CAS  Google Scholar 

  20. L. Baggetto, E. Allcorn, A. Manthiram, and G.M. Veith, Cu2Sb thin films as anode for Na-ion batteries, Electrochem. Commun., 27(2013), p. 168.

    Article  CAS  Google Scholar 

  21. Y.R. Lv, Y.H. Li, C. Han, J.F. Chen, Z.X. He, J. Zhu, L. Dai, W. Meng, and L. Wang, Application of porous biomass carbon materials in vanadium redox flow battery, J. Colloid Interface Sci., 566(2020), p. 434.

    Article  CAS  Google Scholar 

  22. H.L. Wang, W.H. Yu, N. Mao, J. Shi, and W. Liu, Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery, Microporous Mesoporous Mater., 227(2016), p. 1.

    Article  Google Scholar 

  23. S.C. Luo, T.Y. Wang, H.Y. Lu, X.Q. Xu, G. Xue, N. Xu, Y. Wang, and D.S. Zhou, Ultrasmall SnO2 nanocrystals embedded in porous carbon as potassium ion battery anodes with long-term cycling performance, New J. Chem., 44(2020), No. 27, p. 11678.

    Article  CAS  Google Scholar 

  24. L.B. Wang, C.C. Wang, N. Zhang, F.J. Li, F.Y. Cheng, and J. Chen, High anode performance of in situ formed Cu2Sb nano-particles integrated on Cu foil via replacement reaction for sodium-ion batteries, ACS Energy Lett., 2(2017), No. 1, p. 256.

    Article  CAS  Google Scholar 

  25. J.J. Ye, G. Xia, Z.Q. Zheng, and C. Hu, Facile controlled synthesis of coral-like nanostructured Sb2O3@Sb anode materials for high performance sodium-ion batteries, Int. J. Hydrogen Energy, 45(2020), No. 16, p. 9969.

    Article  CAS  Google Scholar 

  26. R. Izquierdo, E. Sacher, and A. Yelon, X-ray photoelectron spectra of antimony oxides, Appl. Surf. Sci., 40(1989), No. 1–2, p. 175.

    Article  CAS  Google Scholar 

  27. L. Wu, X.H. Hu, J.F. Qian, F. Pei, F.Y. Wu, R.J. Mao, X.P. Ai, H.X. Yang, and Y.L. Cao, Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries, Energy Environ. Sci., 7(2014), No. 1, p. 323.

    Article  CAS  Google Scholar 

  28. X.L. Fan, T. Gao, C. Luo, F. Wang, J.K. Hu, and C.S. Wang, Superior reversible tin phosphide-carbon spheres for sodium ion battery anode, Nano Energy, 38(2017), p. 350.

    Article  CAS  Google Scholar 

  29. Z.M. Liu, X.Y. Yu, X.W. Lou, and U. Paik, Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries, Energy Environ. Sci., 9(2016), No. 7, p. 2314.

    Article  CAS  Google Scholar 

  30. J. Zhu, C.Q. Shang, Z.Y. Wang, J.J. Zhang, Y. Liu, S. Gu, L.J. Zhou, H. Cheng, Y.Y. Gu, and Z.G. Lu, SnS/SnSb@C nanofibers with enhanced cycling stability via vulcanization as an anode for sodium-ion batteries, ChemElectroChem, 5(2018), No. 7, p. 1098.

    Article  CAS  Google Scholar 

  31. A.H. Jin, M.J. Kim, K.S. Lee, S.H. Yu, and Y.E. Sung, Spindlelike Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes, Nano Res., 12(2019), No. 3, p. 695.

    Article  CAS  Google Scholar 

  32. W.P. Song, J.L. Kan, H.L. Wang, X.C. Zhao, Y.L. Zheng, H. Zhang, L. Tao, M.H. Huang, W. Liu, and J. Shi, Nitrogen and sulfur co-doped mesoporous carbon for sodium ion batteries, ACS Appl. Nano Mater., 2(2019), No. 9, p. 5643.

    Article  Google Scholar 

  33. Y. Liu and Z.Q. Gao, Synthesis of hierarchically porous nitrogen-doped carbon for sodium-ion batteries, ChemElectroChem, 4(2017), No. 5, p. 1059.

    Article  CAS  Google Scholar 

  34. D.D. Li, J.Z. Li, J.M. Cao, X.Y. Fu, L. Zhou, and W. Han, Highly flexible free-standing Sb/Sb2O3@N-doped carbon nanofiber membranes for sodium ion batteries with excellent stability, Sustainable Energy Fuels, 4(2020), No. 11, p. 5732.

    Article  CAS  Google Scholar 

  35. W.X. Yang, J.H. Zhou, S. Wang, Z.C. Wang, F. Lv, W.S. Zhang, W.Y. Zhang, Q. Sun, and S.J. Guo, A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage, ACS Energy Lett., 5(2020), No. 5, p. 1653.

    Article  CAS  Google Scholar 

  36. J. Hu, B. Wang, Q.Y. Yu, D. Zhang, Y.H. Zhang, Y. Li, and W.A. Wang, CoSe2/N-doped carbon porous nanoframe as an anode material for potassium-ion storage, Nanotechnology, 31(2020), No. 39, art. No. 395403.

  37. C.L. Gao, Q. Wang, S.H. Luo, Z.Y. Wang, Y.H. Zhang, Y.G. Liu, A.M. Hao, and R. Guo, High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum, J. Power Sources, 415(2019), p. 165.

    Article  CAS  Google Scholar 

  38. T.X. Wang, W.T. Guo, G. Wang, H. Wang, J.T. Bai, and B.B. Wang, Highly dispersed FeSe2 nanoparticles in porous carbon nanofibers as advanced anodes for sodium and potassium ion batteries, J. Alloys Compd., 834(2020), art. No. 155265.

  39. Z.L. Jian, S. Hwang, Z.F. Li, A.S. Hernandez, X.F. Wang, Z.Y. Xing, D. Su, and X.L. Ji, Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries, Adv. Funct. Mater., 27(2017), No. 26, art. No. 1700324.

  40. S. Bao, S.H. Luo, S.X. Yan, Z.Y. Wang, Q. Wang, J. Feng, Y.L. Wang, and T.F. Yi, Nano-sized MoO2 spheres interspersed three-dimensional porous carbon composite as advanced anode for reversible sodium/potassium ion storage, Electrochim. Acta, 307(2019), p. 293.

    Article  CAS  Google Scholar 

  41. K.S. Huang, Z. Xing, L.C. Wang, X. Wu, W. Zhao, X.J. Qi, H. Wang, and Z.C. Ju, Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode, J. Mater. Chem. A, 6(2018), No. 2, p. 434.

    Article  CAS  Google Scholar 

  42. C.H. Han, K. Han, X.P. Wang, C.Y. Wang, Q. Li, J.S. Meng, X.M. Xu, Q. He, W. Luo, L.M. Wu, and L.Q. Mai, Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries, Nanoscale, 10(2018), No. 15, p. 6820.

    Article  CAS  Google Scholar 

  43. S.H. Dong, C.X. Li, Z.Q. Li, L.Y. Zhang, and L.W. Yin, Mesoporous hollow Sb/ZnS@C core-shell heterostructures as anodes for high-performance sodium-ion batteries, Small, 14(2018), No. 16, art. No. 1704517.

  44. V. Gabaudan, R. Berthelot, L. Stievano, and L. Monconduit, Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries, J. Phys. Chem. C, 122(2018), No. 32, p. 18266.

    Article  CAS  Google Scholar 

  45. Y.Y. Yi, W. Zhao, Z.H. Zeng, C.H. Wei, C. Lu, Y.L. Shao, W.Y. Guo, S.X. Dou, and J.Y. Sun, ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage, Small, 16(2020), No. 7, art. No. 1906566.

  46. D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu, J. Wang, X.F. Fan, S.V. Savilov, J.Y. Lin, H.J. Fan, and Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance, Nat. Commun., 7(2016), art. No. 12122.

  47. W.W. Zhong, J.D. Huang, S.Q. Liang, J. Liu, Y.J. Li, G.M. Cai, Y. Jiang, and J. Liu, New prelithiated V2O5 superstructure for lithium-ion batteries with long cycle life and high power, ACS Energy Lett., 5(2020), No. 1, p. 31.

    Article  CAS  Google Scholar 

  48. V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7(2014), No. 5, p. 1597.

    Article  CAS  Google Scholar 

  49. T. Brezesinski, J. Wang, S.H. Tolbert, and B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat. Mater., 9(2010), No. 2, p. 146.

    Article  CAS  Google Scholar 

  50. Z. Li, C.Z. Zhang, F. Han, F. Wang, F.Q. Zhang, W. Shen, C. Ye, X.K. Li, and J.S. Liu, Towards high-volumetric performance of Na/Li-ion batteries: A better anode material with molybdenum pentachloride-graphite intercalation compounds (MoCl5-GICs), J. Mater. Chem. A, 8(2020), No. 5, p. 2430.

    Article  CAS  Google Scholar 

  51. C.Z. Zhang, F. Han, J.M. Ma, Z. Li, F.Q. Zhang, S.H. Xu, H.B. Liu, X.K. Li, J.S. Liu, and A.H. Lu, Fabrication of strong internal electric field ZnS/Fe9S10 heterostructures for highly efficient sodium ion storage, J. Mater. Chem. A, 7(2019), No. 19, p. 11771.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51871046, 51902046, 52071073, 51874079, 51571054, 51771046, and 51674068), the Natural Science Foundation of Liaoning Province, China (No. 201602257), Natural Science Foundation of Hebei Province, China (Nos. E2019501097, E2018501091, E2020501004), the Science and Technology Project of Hebei Province, China (No. 15271302D), and the Fundamental Research Funds for the Central Universities, China (Nos. N182304017, N182304015, N172302001, N172304044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-yuan Wang or Yan-guo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Ma, Q., Tian, Kh. et al. Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries. Int J Miner Metall Mater 28, 1666–1674 (2021). https://doi.org/10.1007/s12613-021-2286-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2286-2

Keywords

Navigation