Skip to main content
Log in

Solid-state reaction of a CaO-V2O5 mixture: A fundamental study for the vanadium extraction process

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the phase transformation and kinetics of the solid-state reaction of CaO-V2O5, which is the predominant binary mixture involved in the vanadium recovery process. Thermal analysis, X-ray diffraction spectroscopy, scanning electron microscopy, and energy dispersive spectrometry were used to characterize the solid-state reaction of the samples. The extent of the solid reaction was derived using the preliminary quantitative phase analysis of the X-ray patterns. The results indicate that the solid reaction of the CaO-V2O5 mixture is strongly influenced by the reaction temperature and CaO/V2O5 mole ratio. The transformation of calcium vanadate involves a step-by-step reaction of CaO-V2O5, CaO-CaV2O6, and CaO-Ca2V2O7 depending on the CaO/V2O5 mole ratio. The kinetic data of the solid reaction of the CaO-V2O5 (1:1) mixture followed a second-order reaction model. The activation energy (Ea) and preexponential factor (A) were determined to be 145.38 kJ/mol, and 3.67 × 108 min−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Zhang, W. Zhang, L. Zhang, and S.Q. Gu, Mechanism of vanadium slag roasting with calcium oxide, Int. J. Miner. Process., 138(2015), p. 20.

    Article  CAS  Google Scholar 

  2. C.K. Gupta and N. Krishnamurthy, Extractive Metallurgy of Vanadium, Elsevier Science Publishers B.V., Amsterdam, 1992, p. 76.

    Google Scholar 

  3. R. Navarro, J. Guzman, I. Saucedo, J. Revilla, and E. Guibal, Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes, Waste Manage., 27(2007), No. 3, p. 425.

    Article  CAS  Google Scholar 

  4. J.X Liu, L.J. Li, S.L. Zheng, S.N. Wang, H. Du, and H.Y. Xie, Extraction of vanadium from vanadium-containing slag by roasting-hydrothermal alkali leaching, Chin. J. Process Eng., 14(2014), No. 5, p. 763.

    CAS  Google Scholar 

  5. J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Extraction of vanadium from converter slag by two-step sulfuric acid leaching process, J. Cleaner Prod., 170(2018), p. 1089.

    Article  CAS  Google Scholar 

  6. Z.M. Cao, N. Wang, W. Xie, Z.Y. Qiao, and I.H. Jung, Critical evaluation and thermodynamic assessment of the MgO-V2O5 and CaO-V2O5 systems in air, Calphad, 56(2017), p. 72.

    Article  CAS  Google Scholar 

  7. Y. Yang, H.H. Mao, and M. Selleby, An assessment of the Ca-V-O system, Calphad, 56(2017), p. 29.

    Article  CAS  Google Scholar 

  8. H.Y. Li, K. Wang, W.H. Hua, Y. Zhao, W. Zhou, and B. Xie, Selective leaching of vanadium in calcification-roasted vanadium slag by ammonium carbonate, Hyoromalallurgy, 160(2016), p. 18.

    CAS  Google Scholar 

  9. Z.B. Fu, Experimental research on vanadium extraction by calcified roasting and acid leaching, Iron Steel Vanadium Titanium, 35(2014), No. 1, p. 1.

    Google Scholar 

  10. H.S. Chen, Study on extracting vanadium pentoxide from roasted vanadium slag with lime, Iron Steel Vanadium Titanium, 1992, No. 6, p. 1.

  11. T.I. Krasnenko, T.P. Sirina, and M.V. Rotermel, Phase equilibria in the V2O5-NaVO3-Ca(VO3)2-Mn2V2O7 system and interactions of phases with H2SO4 and NaOH solutions, Russ. J. Inorg. Chem., 53(2008), art. No. 1489.

  12. Z.H. Wang, L. Chen, T. Aldahrib, C. Li, W.Z. Liu, G.Q. Zhang, Y.H. Yang, and D.M. Luo, Direct recovery of low valence vanadium from vanadium slag—Effect of roasting on vanadium leaching, Hydrometallurgy, 191(2020), art. No. 105156.

  13. J. Wen, T. Jiang, J.P. Wang, H.Y. Gao, and L.G. Lu, An efficient utilization of high chromium vanadium slag: Extraction of vanadium based on manganese carbonate roasting and detoxification processing of chromium-containing tailings, J. Hazard. Mater., 378(2019), art. No. 120733.

  14. M. Li, B. Liu, S.L. Zheng, S.N. Wang, H. Du, D.B. Dreisinger, and Y. Zhang, A cleaner vanadium extraction method featuring non-salt roasting and ammonium bicarbonate leaching, J. Cleaner Prod., 149(2017), p. 206.

    Article  CAS  Google Scholar 

  15. T. Jiang, J. Wen, M. Zhou, and X.X. Xue, Phase evolutions, microstructure and reaction mechanism during calcification roasting of high chromium vanadium slag, J. Alloys Compd., 742(2018), p. 402.

    Article  CAS  Google Scholar 

  16. G.B. Sadykhov, K.V. Goncharov, T.V. Goncharenko, and T.V. Olyunina, Phase transformations during the oxidation of calcium-containing titanium-vanadium slags and their influence on the formation of calcium vanadates, Russ. Metall., 2013(2013), No. 3, p. 161.

    Article  Google Scholar 

  17. H.Y. Gao, T. Jiang, Y.Z. Xu, J. Wen, and X.X. Xue, Leaching kinetics of vanadium and chromium during sulfuric acid leaching with microwave and conventional calcification-roasted high chromium vanadium slag, Miner. Process. Extr. Metall. Rev., 41(2020), No. 1, p. 22.

    Article  CAS  Google Scholar 

  18. J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Effect of mechanical activation treatment on the recovery of vanadium from converter slag, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2759.

    Article  CAS  Google Scholar 

  19. J. Wen, T. Jiang, Y.Z. Xu, J.Y. Liu, and X.X. Xue, Efficient separation and extraction of vanadium and chromium in high chromium vanadium slag by selective two-stage roasting-leaching, Metall. Mater. Trans. B, 49(2018), No. 3, p. 1471.

    Article  CAS  Google Scholar 

  20. L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Louër, and P. Scardi, Rietveld refinement guidelines, J. Appl. Crystallogr., 32(1999), p. 36.

    Article  CAS  Google Scholar 

  21. L. Sobrados, S. Goni, J.L. Sagrera, and M.J. Martinez, Study of the evolution of CaCO3-V2O5 (1:1) mixture at room temperature by thermal analysis, J. Therm. Anal., 38(1992), No. 4, p. 997.

    Article  CAS  Google Scholar 

  22. Y. Zhao, H.Y. Li, X.C. Yin, Z.M. Yan, X.M. Yan, and B. Xie, Leaching kinetics of calcification roasted vanadium slag with high CaO content by sulfuric acid, Int. J. Miner. Process., 133(2014), p. 105.

    Article  Google Scholar 

  23. J. Wen, T. Jiang, M. Zhou, H.Y. Gao, J.Y. Liu, and X.X. Xue, Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 515.

    Article  CAS  Google Scholar 

  24. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 520(2011), No. 1–2, p. 1.

    Article  CAS  Google Scholar 

  25. S. Vyazovkin and C.A. Wight, Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids, Int. Rev. Phys. Chem., 17(1998), No. 3, p. 407.

    Article  CAS  Google Scholar 

  26. H.M. Liu, M.Q. Chen, Z.L. Han, and B.A. Fu, Isothermal kinetics based on two-periods scheme for co-drying of biomass and lignite, Thermochim. Acta, 573(2013), p. 25.

    Article  CAS  Google Scholar 

  27. N.X. Fu, L. Zhang, W.H. Liu, B. Zhao, G.F. Tu, and Z.T. Sui, Mechanism analysis of phase transformation process in calcified roasting of vanadium slags, Chin. J. Nonferrous Met., 28(2018), No. 2, p. 377.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52004044), the Natural Science Foundation of Chongqing, China (No. cstc2019jcyj-bshX0068), Chongqing Postdoctoral Innovation Program (No. CQBX201904), and the Open Project Founded by the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-yi Xiang or Xue-wei Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Jy., Wang, X., Pei, Gs. et al. Solid-state reaction of a CaO-V2O5 mixture: A fundamental study for the vanadium extraction process. Int J Miner Metall Mater 28, 1462–1468 (2021). https://doi.org/10.1007/s12613-020-2136-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2136-7

Keywords

Navigation