Skip to main content
Log in

Preparation of Al2O3-SiO2 composite aerogels and their Cu2+ absorption properties

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

In order to remediate heavy metal ions from waste water, Al2O3-SiO2 composite aerogels are prepared via a sol—gel and an organic solvent sublimation drying method. Various characterisation techniques have been employed including X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscope (SEM), Energy-dispersion X-ray spectroscopy (EDX), Brunauer—Emmett—Teller (BET) N2 adsoprtion isotherm, and atomic absorption spectrometer (AAS). XRD and FTIR suggest that the aerogels are composed of mainly Al2O3 and minor SiO2. They have a high specific surface area (827.544 m2/g) and high porosity (86.0%) with a pore diameter of ∼20 nm. Their microstructures show that the distribution of Al, Si, and O is homogeneous. The aerogels can remove ∼99% Cu2+ within ∼40 min and then reach the equilibrium uptake (∼69 mg/g). Preliminary calculations show that the Cu2+ uptake by the aerogels follows pseudo second-order kinetics where chemical sorption may take effect owing largely to the high surface area, high porosity, and abundant functional groups, such as Al-OH and Si-OH, in the aerogel network. The prepared aerogels may serve as efficient absorbents for Cu2+ removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Maleki, Recent advances in aerogels for environmental remediation applications: A review, Chem. Eng. J., 300(2016), p. 98.

    Article  CAS  Google Scholar 

  2. C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, and A. Bhatnagar, Role of nanomaterials in water treatment applications: A review, Chem. Eng. J., 306(2016), p. 1116.

    Article  CAS  Google Scholar 

  3. M. Narayani and K.V. Shetty, Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review, Crit. Rev. Environ. Sci. Technol., 43(2013), No. 9, p. 955.

    Article  CAS  Google Scholar 

  4. F. Gode and E. Pehlivan, Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature, J. Hazard. Mater., 136(2006), No. 2, p. 330.

    Article  CAS  Google Scholar 

  5. F.L. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92(2011), No. 3, p. 407.

    Article  CAS  Google Scholar 

  6. L.B. Hoch, E.J. Mack, B.W. Hydutsky, J.M. Hershman, J.M. Skluzace, and T.E. Mallouk, Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium, Environ. Sci. Technol., 42(2008), No. 7, p. 2600.

    Article  CAS  Google Scholar 

  7. D. Yang, X.Y. Zhao, X.Y. Zou, Z.Y. Zhou, and Z.Y. Jiang, Removing Cr(VI) in water via visible-light photocatalytic reduction over Cr-doped SrTiO3 nonopletes, Chemosphere, 215(2019), p. 586.

    Article  CAS  Google Scholar 

  8. J. Li, X.X. Wang, G.X. Zhao, C.L. Chen, Z.F. Chai, A. Alsaedi, T. Hayat, and X.K. Wang, Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev., 47(2018), No. 7, p. 2322.

    Article  CAS  Google Scholar 

  9. A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwall, A.G. Tkachev, and V.K. Gupta, Adsorption of heavy metals on conventional nanostructured materials for waste water treatment purposes: A review, Ecotoxicol. Environ. Saf., 148(2018), p. 702.

    Article  CAS  Google Scholar 

  10. Q.X. Zheng, Li Z.L., X.X. Miao, Li J.H., Y.F. Huang, H.N. Xia, and C.H. Xiong, Preparation and characterization of novel organic chelating resin and its application in recovery of Zn(II) from aqueous solutions, Appl. Organomet. Chem., 31(2017), art. No. e3546.

  11. X. Mi, G.B. Huang, W.S. Xie, W. Wang, Y. Liu, and J.P. Gao, Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions, Carbon, 50(2012), No. 13, p. 4856.

    Article  CAS  Google Scholar 

  12. K. Vikrant and K.H. Kim, Nano-materials for the adsorptive treatment of Hg(II) ions from water, Chem. Eng. J., 358(2019), p. 264.

    Article  CAS  Google Scholar 

  13. Y.B. Sun, S.B. Yang, Y. Chen, C.C. Ding, W.C. Cheng, and X.K. Wang, Adsorption and desorption of U(VI) on functionalized graphene gxides: A combined experimental and theoretical study, Environ Sci. Technol., 49(2015), No. 7, p. 4255.

    Article  CAS  Google Scholar 

  14. B. Cai, V. Sayevich, N. Gaponik, and A. Eychmuller, Emerging hierarchical aerogels: Self-assembly of metal and semiconductor nanocrystals, Adv. Mater., 30(2018), No. 33, art. No. 1707518.

  15. M. Moner-Girona, A. Roig, E. Molins, and J. Llibre, Sol—gel route to direct formation of silica aerogel microparticles using supercritical solvents, J. Sol Gel Sci. Technol., 26(2003), No. 1, p. 645.

    Article  CAS  Google Scholar 

  16. T.F. Baumann, A.E. Gash, S.C. Chinn, A.M. Sawvel, R.S. Maxwell, and. J.H. Satcher, Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors, Chem. Mater., 17(2005), No. 2, p. 395.

    Article  CAS  Google Scholar 

  17. L.B. Hammouda, I. Mejri, M.K. Younes, and A. Ghorbel, ZrO2 aerogels, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 127.

    Chapter  Google Scholar 

  18. H. Hirashima, Preparation of TiO2 aerogels-like materials under ambient pressure, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 145.

    Chapter  Google Scholar 

  19. A.C. Pierre and A. Rigacci, SiO2 aerogels, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 21.

    Chapter  Google Scholar 

  20. A.M. Anderson and M.K. Carroll, Hydrophobic silica aerogels: Review of synthesis, properties and applications, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 47.

    Chapter  Google Scholar 

  21. S. Mulik and C. Sotiriou-Leventis, Resorcinol-formaldehyde aerogels, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 215.

    Chapter  Google Scholar 

  22. A. Rigacci and P. Achard, Cellulosic and polyurethane aerogels, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogel Handbook, Springer, New York, 2011, p. 191.

    Chapter  Google Scholar 

  23. T. Horikawa, J. Hayashi, and K. Muroyama, Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin, Carbon, 42(2004), No. 1, p. 169.

    Article  CAS  Google Scholar 

  24. M.A. Worsley, J.H. Satcher Jr., and T.F. Baumann, Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes, Lagmmmr, 24(2008), No. 17, p. 9763.

    Article  CAS  Google Scholar 

  25. M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher Jr., and T.F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc., 132(2010), No. 40, p. 14067.

    Article  CAS  Google Scholar 

  26. D.C. Wu, F. Xu, B. Sun, R.W. Fu, H.K. He, and K. Matyjaszewski, Design and preparation of porous polymers, Chem. Rev., 112(2012), No. 7, p. 3959.

    Article  CAS  Google Scholar 

  27. S.L. Brock and H.T. Yu, Chalcogenide aerogels, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 367.

    Chapter  Google Scholar 

  28. J.L. Mohanan, I.U. Arachchige, and S.L. Brock, Porous semiconductor chalcogenide aerogels, Scincee, 307(2005), No. 5708, p. 397.

    CAS  Google Scholar 

  29. G.Q. Zu, J. Shen, W.Q. Wang, L.P. Zou, Y. Lian, Z.H. Zhang, B. Liu, and F. Zhang, Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts, Chem. Mater., 26(2014), No. 19, p. 5761.

    Article  CAS  Google Scholar 

  30. T.W. Wang, H. Sun, J.W. Long, Y.Z. Wang, and D. Schiraldi, Biobased poly(furfuryl alcohol)/clay aerogel composite prepared by a freeze-drying process, ACS Sustainable Chem. Eng., 4(2016), No. 5, p. 2601.

    Article  CAS  Google Scholar 

  31. Y.L. Pan, X.D. Cheng, T. Zhou, L.L. Gong, and H.P. Zhang, Spray freeze-dried monolithic silica aerogel based on water-glass with thermal super-insulating properties, Mater. Lett., 229(2018), p. 265.

    Article  CAS  Google Scholar 

  32. L.L. Ren, S.M. Cui, F.C. Cao, and Q.H. Guo, An easy way to prepare monolithic inorganic oxide aerogels, Angew. Chem. Int. Ed, 53(2014), No. 38, p. 10147.

    Article  CAS  Google Scholar 

  33. J.J. Liao, P.Z. Gao, L. Xu, and J. Feng, A study of morphological properties of SiO2 aerogels obtained at different temperatures, J. Adv. Ceram, 7(2018), No. 4, p. 307.

    Article  CAS  Google Scholar 

  34. L.Y. Yu, Z.L. Xu, H.M. Shen, and H. Yang, Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method, J. Membr. Sci., 337(2009), No. 1–2, p. 257.

    Article  CAS  Google Scholar 

  35. A.S.M. Chong and X.S. Zhao, Functionalization of SBA-15 with APTES and characterization of functionalized materials, J. Phys. Chem B, 107(2003), No. 46, p. 12650.

    Article  CAS  Google Scholar 

  36. D. Janackovic, V. Jakanovic, L. Kostic-Gvozdenovic, and D. Uskokovic, Synthesis of mullite nanostructured spherical powder by ultrasonic spray pyrolysis, Nanostruct. Mater., 10(1998), No. 3, p. 341.

    Article  CAS  Google Scholar 

  37. M. Medina, J. Tapia, S. Pacheco, M. Espinosa, and R. Rodriguez, Adsorption of lead ions in aqueous solution using silicaalumina nanoparticles, J. Non-Cryst. Solids, 356(2010), No. 6–8, p. 383.

    Article  CAS  Google Scholar 

  38. X.F. Ji, Q. Zhou, G.B. Qiu, B. Peng, M. Guo, and M. Zhang, Synthesis of an alumina enriched Al2O3-SiO2 aerogel: Reinforcement and ambient pressure drying, J. Non-Cryst. Solids, 471(2017), p. 160.

    Article  CAS  Google Scholar 

  39. S.J. Juhl, N.J.H. Dunn, M.K. Carroll, A.M. Anderson, B.A. Bruno, J.E. Madero, and M.S. Bono Jr., Epoxide-assisted alumina aerogels by rapid supercritical extraction, J. Non-Cryst. Solids, 426(2015), p. 141.

    Article  CAS  Google Scholar 

  40. A.S. Shaygin, I.V. Kozhevnikov, E.Y. Gerasimov, A.S. Andreev, O.B. Lapina, and O.N. Martyanov, The impact of Si/Al ratio on properties of aluminosilicate aerogels, Microporous Mesoporous Mater., 251(2017), p. 105.

    Article  Google Scholar 

  41. X.D. Wu, G.F. Shao, S. Cui, L. Wang, and X.D. Shen, Synthesis of a novel Al2O3-SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum, Ceram. Int., 42(2016), No. 1, p. 874.

    Article  CAS  Google Scholar 

  42. L. Wang, J. Zhang, R. Zhao, Y. Li, C. Li, and C.L. Zhang, Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies, Bioresource Technol., 101(2010), No. 15, p. 5808.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51602018), the Beijing Municipal Natural Science Foundation (No. 2154052), the China Postdoctoral Science Foundation (No. 2014M560044), and the Fundamental Research Funds for the Central Universities, China (No. FRF-GF-17-B7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-guang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xg., Mao, Qs., Jiang, Y. et al. Preparation of Al2O3-SiO2 composite aerogels and their Cu2+ absorption properties. Int J Miner Metall Mater 28, 317–324 (2021). https://doi.org/10.1007/s12613-020-2111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2111-3

Keywords

Navigation