Skip to main content

Advertisement

Log in

Surface treatment of titanium dental implant with H2O2 solution

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The surface treatment is important for titanium and its alloys as promising candidates for dental implantation due to their bioinert surface. Titanium surface samples were modified using H2O2 solution at different times up to 72 h to boost their bioactivity. According to the results of the field emission scanning electron microscopy test, some nanostructures are formed on the surface of treated titanium samples and increased in size by increasing the time of treatment up to 24 h. After 24 h of application, the sharpness of nanostructures decreased and the micro-cracks and discontinuity in the coating surface increased. The results of the X-ray diffraction study and Raman spectroscopy revealed that anatase (TiO2) was formed on the surface of treated titanium samples. The peak intensity of Raman spectroscopy increased with an improvement in treatment time of up to 24 h and then decreased due to the discontinuity of the coating. Full wettability and ability to form apatite were reached at 6 h of treatment. It is clear that the treatment time has a significant effect on the surface treatment of titanium using the H2O2 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kaur and K. Singh, Review on titanium and titanium based alloys as biomaterials for orthopaedic applications, Mater. Sci. Eng. C, 102(2019), p. 844.

    Article  CAS  Google Scholar 

  2. J.M. Wu, M. Wang, Y.W. Li, F.D. Zhao, X.J. Ding, and A. Osaka, Crystallization of amorphous titania gel by hot water aging and induction of in vitro apatite formation by crystallized titania, Surf. Coat. Technol., 201(2006), No. 3–4, p. 755.

    Article  CAS  Google Scholar 

  3. A. Pandit, J. Planell, and M. Navarro, Titanium and Nitinol (NiTi), 3rd ed., Elsevier, Amsterdam, 2013, p. 120.

    Google Scholar 

  4. R.A. Zavanelli, G.E.P. Henriques, I. Ferreira, and J.M. de Almeida Rollo, Corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloys in different storage environments, J. Prosthet. Dent., 84(2000), No. 3, p. 274.

    Article  CAS  Google Scholar 

  5. M. Wei, H.M. Kim, T. Kokubo, and J.H. Evans, Optimising the bioactivity of alkaline-treated titanium alloy, Mater. Sci. Eng. C, 20(2002), No. 1–2, p. 125.

    Article  Google Scholar 

  6. J.M. Wu, Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide, J. Cryst. Growth, 269(2004), No. 2–4, p. 347.

    Article  CAS  Google Scholar 

  7. M. Khodaei, A. Valanezhad, I. Watanabe, and R. Yousefi, Surface and mechanical properties of modified porous titanium scaffold, Surf. Coat. Technol., 315(2017), p. 61.

    Article  CAS  Google Scholar 

  8. M. Kosmulski, The significance of the difference in the point of zero charge between rutile and anatase, Adv. Colloid Interface Sci., 99(2002), No. 3, p. 255.

    Article  CAS  Google Scholar 

  9. V.M. Frauchiger, Anodic Plasma-chemical Treatment of Titanium Implant Surfaces [Dissertation], Eidgenossische Technische Hochschule Z¼rich, Zurich, 2002.

    Google Scholar 

  10. D.J. Kim, S.H. Hahn, S.H. Oh, and E.J. Kim, Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol-gel dip coating, Mater. Lett., 57(2002), No. 2, p. 355.

    Article  Google Scholar 

  11. M. Khodaei, M. Meratian, O. Savabi, M.H. Fathi, and H. Ghomi, The side effects of surface modification of porous titanium implant using hydrogen peroxide: Mechanical properties aspects, Mater. Lett., 178(2016), p. 201.

    Article  CAS  Google Scholar 

  12. M. Khodaei, M. Meratian, M. Shaltooki, B. Hashemibeni, O. Savabi, and M. Razavi, Surface modification of Ti6Al4V implants by heat, H2O2 and alkali treatments, Surf. Eng., 32(2016), No. 10, p. 786.

    Article  CAS  Google Scholar 

  13. M. Karthega, S. Nagarajan, and N. Rajendran, In vitro studies of hydrogen peroxide treated titanium for biomedical applications, Electrochim. Acta, 55(2010), No. 6, p. 2201.

    Article  CAS  Google Scholar 

  14. M. Wen, J.F. Gu, G. Liu, Z.B. Wang, and J. Lu, Surface evolution of a gradient structured Ti in hydrogen peroxide solution, Appl. Surf. Sci., 254(2008), No. 9, p. 2905.

    Article  CAS  Google Scholar 

  15. M. Khodaei and S.H. Kelishadi, The effect of different oxidizing ions on hydrogen peroxide treatment of titanium dental implant, Surf. Coat. Technol., 353(2018), p. 158.

    Article  CAS  Google Scholar 

  16. T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27(2006), No. 15, p. 2907.

    Article  CAS  Google Scholar 

  17. A. Rodriguez-Contreras, D.G. Bello, and A. Nanci, Surface nanoporosity has a greater influence on osteogenic and bacterial cell adhesion than crystallinity and wettability, Appl. Surf. Sci., 445(2018), p. 255.

    Article  CAS  Google Scholar 

  18. W.Y. Meng, Y.M. Zhou, Y.J. Zhang, Q. Cai, L.M. Yang, J.H. Zhao, and C.Y. Li, Osteoblast behavior on hierarchical micro/nano-structured titanium surface, J. Bionic Eng., 8(2011), No. 3, p. 234.

    Article  Google Scholar 

  19. Q. Liu, W.J. Li, L. Cao, J.J. Wang, Y.M. Qu, X.Y. Wang, R.X. Qiu, X. Di, Z.B. Wang, and B.J. Liang, Response of MG63 osteoblast cells to surface modification of Ti-6Al-4V implant alloy by laser interference lithography, J. Bionic Eng., 14(2017), No. 3, p. 448.

    Article  CAS  Google Scholar 

  20. A. Roguska, M. Pisarek, A. Belcarz, L. Marcon, M. Holdynski, M. Andrzejczuk, and M. Janik-Czachor, Improvement of the bio-functional properties of TiO2 nanotubes, Appl. Surf. Sci., 388(2016), p. 775.

    Article  CAS  Google Scholar 

  21. P.L. Jiang, J.H. Liang, and C.J. Lin, Construction of micro-nano network structure on titanium surface for improving bioactivity, Appl. Surf. Sci., 280(2013), p. 373.

    Article  CAS  Google Scholar 

  22. Y. Luo, S.M. Ge, and Z.M. Jin, Wettability modification for biosurface of titanium alloy by means of sequential carburization, J. Bionic Eng., 6(2009), No. 3, p. 219.

    Article  Google Scholar 

  23. R.A. Gittens, L. Scheideler, F. Rupp, S.L. Hyzy, J. Geis-Gerstorfer, Z. Schwartz, and B.D. Boyan, A review on the wettability of dental implant surfaces 11: Biological and clinical aspects, Acta Biomater., 10(2014), No. 7, p. 2907.

    Article  CAS  Google Scholar 

  24. H. Chouirfa, H. Bouloussa, V. Migonney, and C. Falentin-Daudré, Review of titanium surface modification techniques and coatings for antibacterial applications, Acta Biomater., 83(2019), p. 37.

    Article  CAS  Google Scholar 

  25. A. Osaka, K. Tsuru, and S. Hayakawa, Titania derived from combined chemical and thermal treatments of titanium: In vitro apatite forming ability, Phosphorus Res. Bull., 17(2004), p. 130.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by Grant-in-Aid (Nos. 19K10250 and 18K09686) from Scientific Research of the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Valanezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaei, M., Amini, K., Valanezhad, A. et al. Surface treatment of titanium dental implant with H2O2 solution. Int J Miner Metall Mater 27, 1281–1286 (2020). https://doi.org/10.1007/s12613-020-2016-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2016-1

Keywords

Navigation