Skip to main content
Log in

Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Currently, developing supercapacitors with robust cycle stability and suitability for wide-temperature-range operations is still a huge challenge. In the present work, few-layer hexagonal boron nitride nanosheets (h-BNNSs) with a thickness of 2–4 atomic layers were fabricated via vacuum freeze-drying and nitridation. Then, the h-BNNSs/reduced graphene oxide (rGO) composite were further prepared using a hydrothermal method. Due to the combination of two two-dimensional (2D) van der Waals-bonded materials, the as-prepared h-BNNSs/rGO electrode exhibited robustness to wide-temperature-range operations from −10 to 50°C. When the electrodes worked in a neutral aqueous electrolyte (1 M Na2SO4), they showed a great stable cycling performance with almost 107% reservation of the initial capacitance at 0°C and 111% at 50°C for 5000 charge—discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zhang, X.S. Hu, Z.P. Wang, F.C. Sun, and D.G. Dorrell, A review of supercapacitor modeling, estimation, and applications: A control/management perspective, Renewable Sustainable Energy Rev., 81(2018), p. 1868.

    Article  Google Scholar 

  2. W.J. Li, Q. Liu, S.L. Chen, Z. Fang, X. Liang, G.D. Wei, L. Wang, W.Y. Yang, Y. Ji, and L.Q. Mai, Single-crystalline integrated 4H-SiC nanochannel array electrode: Toward high-performance capacitive energy storage for robust wide-temperature operation, Mater. Horiz., 5(2018), No. 5, p. 883.

    Article  CAS  Google Scholar 

  3. M. Ren, C.Y. Zhang, Y.L. Wang, and J.J. Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 12(2018), No. 25, p. 1482.

    Article  CAS  Google Scholar 

  4. Z. Ghasemi majd, P. Amiri, and S.F. Taghizadeh, Ab-initio study of structural and electronic properties of WS2/h-BN van der Waals heterostructure, Surf. Sci., 672–673(2018), p. 13.

    Article  CAS  Google Scholar 

  5. Z. Cao, J.H. Bu, Z.Q. Zhong, C.Y. Sun, Q.S. Zhang, J.D. Wang, S.H. Chen, and X.W. Xie, Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over BN-supported Pt catalysts at room temperature, Appl. Catal. A, 578(2019), p. 105.

    Article  CAS  Google Scholar 

  6. J. Zhang, H.L. Zhang, P. Zhou, P.H. Qing, H.B. Xu, and Y. Zhang, Porous hexagonal boron nitride nanosheets with large adsorption capacity for Cu2+ synthesized through a two-step roasting process, Mater. Lett., 213(2018), p. 211.

    Article  CAS  Google Scholar 

  7. A. Lale, S. Bernard, and U.B. Demirci, Boron nitride for hydrogen storage, ChemPlusChem, 83(2018), No. 10, p. 893.

    Article  CAS  Google Scholar 

  8. Z.Y. Liu, Y. Fang, H.C. Jia, C. Wang, Q.Q. Song, L.L. Li, J. Lin, Y. Huang, C. Yu, and C.C. Tang, Novel multifunctional cheese-like 3D carbon-BN as a highly efficient adsorbent for water purification, Sci. Rep., 8(2018), art. No. 1104.

  9. P.W. Wu, W.S. Zhu, B.L. Dai, Y.H. Chao, C.F. Li, H.P. Li, M. Zhang, W. Jiang, and H.M. Li, Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization, Chem. Eng. J., 301(2016), p. 123.

    Article  CAS  Google Scholar 

  10. Y.X. Ji, B. Calderon, Y.M. Han, P. Cueva, N.R. Jungwirth, H.A. Alsalman, J. Hwang, G.D. Fuchs, D.A. Muller, and M.G. Spencer, Chemical vapor deposition growth of large single-crystal mono-, bi-, tri-layer hexagonal boron nitride and their interlayer stacking, ACS Nano, 11(2017), No. 12, p. 12057.

    Article  CAS  Google Scholar 

  11. Y. Han, S.Y. Liu, L. Cui, L. Xu, J. Xie, X.K. Xia, W.K. Hao, B. Wang, H. Li, and J. Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 88.

    Article  CAS  Google Scholar 

  12. R. Vellacheri, A. Al-Haddad, H.P. Zhao, W.X. Wang, C.L. Wang, and Y. Lei, High performance supercapacitor for efficient energy storage under extreme environmental temperatures, Nano Energy, 8(2014), p. 231.

    Article  CAS  Google Scholar 

  13. W.Q. Han, L.J. Wu, Y.M. Zhu, K.J. Watanabe, and T. Taniguchi, Structure of chemically derived mono- and fewatomic-layer boron nitride sheets, Appl. Phys. Lett., 93(2008), No. 22, art. No. 223103.

    Article  CAS  Google Scholar 

  14. M. Yankowitz, Q. Ma, P. Jarillo-Herrero, and B.J. LeRoy, Van der Waals heterostructures combining graphene and hexagonal boron nitride, Nat. Rev. Phys., 1(2019), No. 2, p. 112.

    Article  Google Scholar 

  15. C.K. Chang, S. Kataria, C.C. Kuo, et al., Band gap engineering of chemical vapor deposited graphene by in situ BN doping, ACS Nano, 7(2013), No. 2, p. 1333.

    Article  CAS  Google Scholar 

  16. X.L. Li, J. Liu, K. Ding, X.H. Zhao, S. Li, W.G. Zhou, and B.L. Liang, Temperature dependence of raman-active inplane E2g phonons in layered graphene and h-BN flakes, Nanoscale Res. Lett., 13(2018), No. 1, p. 25.

    Article  CAS  Google Scholar 

  17. M.J. Wang, Z.Y. Jiao, Y.P. Chen, X. Hou, L. Fu, Y.M. Wu, S.Y. Li, N. Jiang, and J.H. Yu, Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content, Composites Part A, 109(2018), p. 321.

    Article  CAS  Google Scholar 

  18. Q. Li, T. Yang, Q.F. Yang, F. Wang, K.C. Chou, and X.M. Hou, Porous hexagonal boron nitride whiskers fabricated at low temperature for effective removal of organic pollutants from water, Ceram. Int., 42(2016), No. 7, p. 8754.

    Article  CAS  Google Scholar 

  19. J.Y. Sun, C. Lu, Y.Z. Song, Q.Q. Ji, X.J. Song, Q.C. Li, Y.F. Zhang, L. Zhang, J. Kong, and Z.F. Liu, Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition, Chem. Soc. Rev., 47(2018), No. 12, p. 4242.

    Article  CAS  Google Scholar 

  20. Z.H. Du, X.M. Zeng, M.M. Zhu, A. Kanta, Q. Liu, J.Z. Li, and L.B. Kong, Alkyl ethoxylate assisted liquid phase exfoliation of BN nanosheet and its application as interphase for oxide/oxide composites, Ceram. Int., 44(2018), No. 17, p. 21461.

    Article  CAS  Google Scholar 

  21. P.W. Wu, W.S. Zhu, Y.H. Chao, J.S. Zhang, P.F. Zhang, H.Y. Zhu, C.F. Li, Z.G. Chen, H.M. Li, and S. Dai, A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization., Chem. Commun., 52(2016), No. 1, p. 144.

    Article  CAS  Google Scholar 

  22. X.F. Tu, Y.K. Zhou, and Y.J. Song, Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for highperformance lithium-ion batteries, Appl. Surf. Sci., 400(2017), p. 329.

    Article  CAS  Google Scholar 

  23. D.Y. Guo, Y.J. Zhao, C. Ling, J.B. Li, and H.B. Jin, Vacuum freeze-drying assisted preparation of spherical AlB2 powders with ultrafine microstructure, Ceram. Int., 44(2018), No. 6, p. 6451.

    Article  CAS  Google Scholar 

  24. D. Annie, V. Chandramouli, S. Anthonysamy, C. Ghosh, and R. Divakar, Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders, J. Nucl. Mater., 484(2017), p. 51.

    Article  CAS  Google Scholar 

  25. R.P. Liu, T.T. Xu, and C.A. Wang, A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method, Ceram. Int., 42(2016), No. 2, p. 2907.

    Article  CAS  Google Scholar 

  26. W. Luo, Y.B. Wang, E. Hitz, Y. Lin, B. Yang, and L.B. Hu, Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications, Adv. Funct. Mater., 27(2017), No. 31, art. No. 1701450.

    Article  CAS  Google Scholar 

  27. X.L. Xi, Z.R. Nie, J.C. Yang, X.T. Fu, W. Wang, and T.Y. Zuo, Preparation and characterization of Ce-W composite nanopowder, Mater. Sci. Eng. A, 394(2005), No. 1–2, p. 360.

    Article  CAS  Google Scholar 

  28. W.L. Luan, L. Gao, and J.K. Guo, Study on drying stage of nanscale powder preparation, Nanostruct. Mater., 10(1998), No. 7, p. 1119.

    Article  CAS  Google Scholar 

  29. R.Y. Tay, M.H. Griep, G. Mallick, S.H. Tsang, R.S. Singh, T. Tumlin, E.H.T. Teo, and S.P. Karna, Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper, Nano Lett., 14(2014), No. 2, p. 839.

    Article  CAS  Google Scholar 

  30. Y. Wen, X. Shang, J. Dong, K. Xu, J. He, and C. Jiang, Ultraclean and large-area monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nanotechnology, 26(2015), No. 27, art. No. 275601.

    Article  CAS  Google Scholar 

  31. D. Watanabe, H. Aoki, R. Moriyama, M.K. Mazumder, C. Kimura, and T. Sugino, Characterization of BCN film after wet process for interconnection integration, Diamond Relat. Mater., 17(2008), No. 4–5, p. 669.

    Article  CAS  Google Scholar 

  32. Y. Wada, Y.K. Yap, M. Yoshimura, Y. Mori, and T. Sasaki, The control of BN and BC bonds in BCN films synthesized using pulsed laser deposition, Diamond Relat. Mater., 9(2000), No. 3–6, p. 620.

    Article  CAS  Google Scholar 

  33. P.C. Tsai, The deposition and characterization of BCN films by cathodic arc plasma evaporation, Surf. Coat. Technol., 201(2007), No. 9–11, p. 5108.

    Article  CAS  Google Scholar 

  34. A. Prakash and K.B. Sundaram, Deposition and XPS studies of dual sputtered BCN thin films, Diamond Relat. Mater., 64(2016), p. 80.

    Article  CAS  Google Scholar 

  35. C.J. Huang, C. Chen, M.W. Zhang, L.H. Lin, X.X. Ye, S. Lin, M. Antonietti, and X.C. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis, Nat. Commun., 6(2015), art. No. 7698.

  36. M.A. Mannan, H. Noguchi, T. Kida, M. Nagano, N. Hirao, and Y. Baba, Chemical bonding states and local structures of the oriented hexagonal BCN films synthesized by microwave plasma CVD, Mater. Sci. Semicond. Process., 11(2008), No. 3, p. 100.

    Article  CAS  Google Scholar 

  37. L.C. Wang, S.Q. Ni, C.L. Guo, and Y.T. Qian, One pot synthesis of ultrathin boron nitride nanosheet-supported nanoscale zerovalent iron for rapid debromination of polybrominated diphenyl ethers, J. Mater. Chem. A, 1(2013), No. 21, p. 6379.

    Article  CAS  Google Scholar 

  38. X.M. Guo, B.X. Feng, L.G. Gai, and J.H. Zhou, Reduced graphene oxide/polymer dots-based flexible symmetric supercapacitors delivering an output potential of 1.7 V with electrochemical charge injection, Electrochim. Acta, 293(2019), p. 399.

    Article  CAS  Google Scholar 

  39. X.M. Hou, Q. Li, L.Q. Zhang, T. Yang, J.H. Chen, and L. Su, Tunable preparation of chrysanthemum-like titanium nitride as flexible electrode materials for ultrafastcharging/discharging and excellent stable supercapacitors, J. Power Sources, 396(2018), p. 319.

    Article  CAS  Google Scholar 

  40. Z.Q. Ye, F.J. Wang, C. Jia, K.G. Mu, M. Yu, Y.Y. Lv, and Z.Q. Shao, Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes, Chem. Eng. J., 330(2017), p. 1166.

    Article  CAS  Google Scholar 

  41. S.G. Huang, J. Sun, J. Yan, J.Q. Liu, W.J. Wang, Q.Q. Qin, W.P. Mao, W. Xu, Y.C. Wu, and J.F. Wang, Enhanced high-temperature cyclic stability of Al-doped manganese dioxide and morphology evolution study through in situ NMR under high magnetic field, ACS Appl. Mater. Interfaces, 10(2018), No. 11, p. 9398.

    Article  CAS  Google Scholar 

  42. W.W. Lv, R.P. Xue, S. Chen, and M.J. Jiang, Temperature stability of symmetric activated carbon supercapacitors assembled with in situ electrodeposited poly(vinyl alcohol) potassium borate hydrogel electrolyte, Chin. Chem. Lett., 29(2018), No. 4, p. 637.

    Article  CAS  Google Scholar 

  43. Y.T. Weng, H.A. Pan, N.L. Wu, and G.Z. Chen, Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors, J. Power Sources, 274(2015), p. 1118.

    Article  CAS  Google Scholar 

  44. A. Meng, Z. Yang, Z.J. Li, X.C. Yuan, and J. Zhao, Nano-chain architectures constructed by hydrangea-like MoS2 nanoflowers and SiC nanowires: Synthesis, mechanism and the enhanced electrochemical and wide-temperature properties as an additive-free negative electrode for supercapacitors, J. Alloys Compd., 746(2018), p. 93.

    Article  CAS  Google Scholar 

  45. C.H. Ng, H.N. Lim, S. Hayase, Z. Zainal, S. Shafie, and N.M. Huang, Effects of temperature on electrochemical properties of bismuth oxide/manganese oxide pseudocapacitor, Ind. Eng. Chem. Res., 57(2018), No. 6, p. 2146.

    Article  CAS  Google Scholar 

  46. J.G. Wang, Y. Yang, Z.H. Huang, and F. Kang, Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte, J. Power Sources, 224(2013), p. 86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation for Excellent Young Scholars of China (No. 51522402), the National Postdoctoral Program for Innovative Talents of China (No. BX20180034), the National Natural Science Foundation of China (No. 51902020), the Fundamental Research Funds for the Central Universities (No. FRF-TP-18-045A1), and the China Postdoctoral Science Foundation (No. 2018M641192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-mei Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Liu, Hj., Bai, F. et al. Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance. Int J Miner Metall Mater 27, 220–231 (2020). https://doi.org/10.1007/s12613-019-1910-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1910-x

Keywords

Navigation