Skip to main content
Log in

Comprehensive recovery of lead, zinc, and iron from hazardous jarosite residues using direct reduction followed by magnetic separation

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Lead, zinc, and iron were recovered from jarosite residues using direct reduction followed by magnetic separation. The influence of the coal dosage, reduction temperature, and reduction time on the volatilization rates of lead and zinc and the metallization rate of iron were investigated. The results show that the volatilization rates of lead and zinc were 96.97% and 99.89%, respectively, and the iron metallization rate was 91.97% under the optimal reduction roasting conditions of a coal dosage of 25.0wt% and reduction roasting at 1250°C for 60 min. The magnetic concentrate with an iron content of 90.59wt% and an iron recovery rate of 50.87% was obtained under the optimum conditions in which 96.56% of the reduction product particles were smaller than 37 μm and the magnetic field strength was 24 kA/m. Therefore, the results of this study demonstrate that recovering valuable metals such as lead, zinc, and iron from jarosite residues is feasible using the developed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Choque, F.N. Alonso, and J.C. Fuentes-Aceituno, Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system, J. Hazard. Mater., 317(2016), No. 5, p. 440.

    Article  Google Scholar 

  2. L. Montanaro, N. Bianchini, J.M. Rincon, and M. Romero, Sintering behaviour of pressed red mud wastes from zinc hydrometallurgy, Ceram. Int., 27(2001), No. 1, p. 29.

    Article  Google Scholar 

  3. P. Asokan, M. Saxena, and S.R. Asolekar, Jarosite characteristics and its utilisation potentials, Sci. Total Environ., 359(2006), No. 1-3, p. 232.

    Article  Google Scholar 

  4. P. Asokan, M. Saxena, and S.R. Asolekar, Recycling hazardous jarosite waste using coal combustion residues, Mater. Charact., 61(2010), No. 12, p. 1342.

    Article  Google Scholar 

  5. S.H. Ju, Y.F. Zhang, Y. Zhang, P.Y. Xue, and Y.H. Wang, Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy, J. Hazard. Mater., 192(2011), No. 2, p. 554.

    Article  Google Scholar 

  6. M. Erdem and A. Özverdi, Environmental risk assessment and stabilization/solidification of zinc extraction residue: II. Stabilization/solidification, Hydrometallurgy, 105(2011), No. 3, p. 270.

    Article  Google Scholar 

  7. A. Özverdi and M. Erdem, Environmental risk assessment and stabilization/solidification of zinc extraction residue: I. Environmental risk assessment, Hydrometallurgy, 100(2010), No. 3, p. 103.

    Article  Google Scholar 

  8. E. Salinas, A. Roca, M. Cruells, F. Patiño, and D.A. Córdoba, Characterization and alkaline decomposition–cyanidation kinetics of industrial ammonium jarosite in NaOH media, Hydrometallurgy, 60(2001), No. 3, p. 237.

    Article  Google Scholar 

  9. P. Asokan, M. Saxena, and S.R. Asolekar, Hazardous jarosite use in developing non-hazardous product for engineering application, J. Hazard. Mater., 137(2006), No. 3, p. 1589.

    Article  Google Scholar 

  10. V.A. Mymrin, H.A. Ponte, and P.R. Impinnisi, Potential application of acid jarosite wastes as the main component of construction materials, Constr. Build. Mater., 19(2005), No. 2, p. 141.

    Article  Google Scholar 

  11. Y.M. Chen, M.T. Tang, S.H. Yang, J. He, C.B. Tang, J.G. Yang, and J.Y. Lu, Novel technique of decomposition of ammonium jarosite bearing indium in NaOH medium, Chin. J. Nonferrous Met., 19(2009), No. 7, p. 1322.

    Google Scholar 

  12. H.P. Hu, Q.F. Deng, C. Li, Y. Xie, Z.Q. Dong, and W. Zhang, The recovery of Zn and Pb and the manufacture of lightweight bricks from zinc smelting slag and clay, J. Hazard. Mater., 271(2014), No. 5, p. 220.

    Article  Google Scholar 

  13. H.S. Han, W. Sun, Y.H. Hu, B.L. Jia, and H.H. Tang, Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy, J. Hazard. Mater., 278(2014), p. 49.

    Article  Google Scholar 

  14. E.N. Malenga, A.M. Bafubiandi, and W. Nheta, Alkaline leaching of nickel bearing ammonium jarosite precipitate using KOH, NaOH and NH4OH in the presence of EDTA and Na2S, Hydrometallurgy, 155(2015), p. 69.

    Article  Google Scholar 

  15. P.Y. Xue, S.H. Ju, Y.F. Zhang, and X.W. Wang, Recovery of valuable metals by leaching of roasted jarosite residue, Chin. J. Process Eng., 11(2011), No. 1, p. 56.

    Google Scholar 

  16. P. Mehra, R.C. Gupta, and B.S. Thomas, Properties of concrete containing jarosite as a partial substitute for fine aggregate, J. Cleaner Prod., 120(2016), p. 241.

    Article  Google Scholar 

  17. D.B. Guo, M. Hu, C.X. Pu, B. Xiao, Z.Q. Hu, S.M. Liu, X. Wang, and X.L. Zhu, Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas, Int. J. Hydrogen Energy, 40(2015), No. 14, p. 4733.

    Article  Google Scholar 

  18. Y.S. Sun, P. Gao, Y.X. Han, and D.Z. Ren, Reaction behavior of iron minerals and metallic iron particles growth in coal-based reduction of an oolitic iron ore, Ind. Eng. Chem. Res., 52(2013), No. 6, p. 2323.

    Article  Google Scholar 

  19. Y.S. Sun, Y.X. Han, P. Gao, and J.W. Yu, Size distribution behavior of metallic iron particles in coal-based reduction products of an oolitic iron ore, Miner. Process. Extr. Metall. Rev., 36(2015), No. 4, p. 249.

    Article  Google Scholar 

  20. W. Yu, T.C. Sun, Q. Cui, and J. Kou, Effect of coal type on the reduction and magnetic separation of a high-phosphorus oolitic hematite ore, ISIJ Int., 55(2015), No. 3, p. 536.

    Article  Google Scholar 

  21. H.F. Yang, L.L. Jing, and B.G. Zhang, Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation, J. Hazard. Mater. 185(2011), No. 2-3, p. 1405.

    Article  Google Scholar 

  22. W. Liu, J. Yang, and B. Xiao, Application of Bayer red mud for iron recovery and building material production from alumosilicate residues, J. Hazard. Mater., 161(2009), No. 1, p. 474.

    Article  Google Scholar 

  23. J.W. Park, J.C. Ahn, H. Song, K. Park, H. Shin, and J.S. Ahn, Reduction characteristics of oily hot rolling mill sludge by direct reduced iron method, Resour. Conserv. Recycl., 34(2002), No. 2, p. 129.

    Article  Google Scholar 

  24. K. Maweja, T. Mukongo, and I. Mutombo, Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals, J. Hazard. Mater., 164(2009), No. 2, p. 856.

    Article  Google Scholar 

  25. G. Yu, N. Peng, L. Zhou, Y.J. Liang, X.Y. Zhou, B. Peng, L.Y. Chai, and Z.H. Yang, Selective reduction process of zinc ferrite and its application in treatment of zinc leaching residues, Trans. Nonferrous Met. Soc. China, 25(2015), No. 8, p. 2744.

    Article  Google Scholar 

  26. H.F. Yang, B.P. Jiang, Y.Y. Wang, X.X. Yuan, and Y.Y. Zhang, Direct reduction effect of coal slime on zinc-leaching residue, Chin. J. Nonferrous Met., 25(2015), No. 1, p. 250.

    Google Scholar 

  27. Z.G. Liu, T.C. Sun, X.P. Wang, and E.X. Gao, Generation process of FeS and its inhibition mechanism on iron mineral reduction in selective direct reduction of laterite nickel ore, Int. J. Miner. Metall. Mater., 22(2015), No. 9, p. 901.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-fen Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yy., Yang, Hf., Jiang, B. et al. Comprehensive recovery of lead, zinc, and iron from hazardous jarosite residues using direct reduction followed by magnetic separation. Int J Miner Metall Mater 25, 123–130 (2018). https://doi.org/10.1007/s12613-018-1555-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1555-1

Keywords

Navigation