Skip to main content
Log in

Pitting corrosion resistance of a novel duplex alloy steel in alkali-activated slag extract in the presence of chloride ions

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this study, two types of reinforcing steels (conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions (ordinary Portland cement (OPC) extract and alkali-activated slag (AAS) extract) to investigate their pitting corrosion resistance. The results confirm that the pitting corrosion resistance of the alloy steel is much higher than that of the low-carbon steel in both extract solutions with various NaCl concentrations. Moreover, for each type of steel, the AAS extract contributes to a higher pitting corrosion resistance compared with the OPC extract in the presence of chloride ions, likely because of the formation of flocculent precipitates on the steel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M. Hossain, M.R. Karim, M.K. Hossain, M.N. Islam, and M.F.M. Zain, Durability of mortar and concrete containing alkali-activated binder with pozzolans: A review, Constr. Build. Mater.,, 93(2015), p. 95.

    Article  Google Scholar 

  2. P.K. Mehta, Greening of the concrete industry for sustainable development, Concr. Int.,, 24(2002), No. 7, p. 23.

    Google Scholar 

  3. J.L. Provis, A. Palomo, and C. Shi, Advances in understanding alkali-activated materials, Cem. Concr. Res.,, 78(2015), p. 110.

    Article  Google Scholar 

  4. F. Pacheco-Torgal, Z. Abdollahnejad, A.F. Camões, M. Jamshidi, and Y. Ding, Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?, Constr. Build. Mater.,, 30(2012), p. 400.

    Article  Google Scholar 

  5. S.A. Bernal and J.L. Provis, Durability of alkali-activated materials: progress and perspectives, J. Am. Ceram. Soc.,, 97(2014), No. 4, p. 997.

    Article  Google Scholar 

  6. M. Babaee and A. Castel, Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete, Cem. Concr. Res.,, 88(2016), p. 96.

    Article  Google Scholar 

  7. C. Monticelli, M.E. Natali, A. Balbo, C. Chiavari, F. Zanotto, S. Manzi, and M.C. Bignozzi, Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization, Cem. Concr. Res.,, 80(2016), p. 60.

    Article  Google Scholar 

  8. C. Tennakoon, A. Shayan, J.G. Sanjayan, and A. Xu, Chloride ingress and steel corrosion in geopolymer concrete based on long term tests, Mater. Des.,, 116(2016), p. 287.

    Article  Google Scholar 

  9. C. Monticelli, M. Criado, S. Fajardo, J.M. Bastidas, M. Abbottoni, and A. Balbo, Corrosion behaviour of a low Ni austenitic stainless steel in carbonated chloride-polluted alkali- activated fly ash mortar, Cem. Concr. Res.,, 55(2014), p. 49.

    Article  Google Scholar 

  10. M.S. Badar, K. Kupwade-Patil, S.A. Bernal, J.L. Provis, and E.N. Allouche, Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes, Constr. Build. Mater.,, 61(2014), p. 79.

    Article  Google Scholar 

  11. K. Kupwade-Patil and E.N. Allouche, Examination of chloride- induced corrosion in reinforced geopolymer concretes, J. Mater. Civil Eng.,, 25(2012), No. 10, p. 1465.

    Article  Google Scholar 

  12. W. Aperador, R.M. de Gutiérrez, and D.M. Bastidas, Steel corrosion behaviour in carbonated alkali-activated slag concrete, Corros. Sci.,, 51(2009), No. 9, p. 2027.

    Article  Google Scholar 

  13. M. Holloway and J. Sykes, Studies of the corrosion of mild steel in alkali-activated slag cement mortars with sodium chloride admixtures by a galvanostatic pulse method, Corros. Sci.,, 47(2005), No. 12, p. 3097.

    Article  Google Scholar 

  14. Q.M. Ma, S.V. Nanukuttan, P.M. Basheer, Y. Bai, and C.H. Yang, Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes, Mater. Struct.,, 49(2015), No. 9, p. 3663.

    Article  Google Scholar 

  15. A.N. Scott and M.D.A. Thomas, Chloride resistance of 9% Cr steel in a simulated pore solution, Corrosion,, 69(2013), No. 11, p. 1073.

    Article  Google Scholar 

  16. M.A. Islam, B.P. Bergsma, and C.M. Hansson, Chloride- induced corrosion behavior of stainless steel and carbon steel reinforcing bars in sound and cracked concrete, Corrosion,, 69(2013), No. 3, p. 303.

    Article  Google Scholar 

  17. R.D. Moser, P.M. Singh, L.F. Kahn, and K.E. Kurtis, Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions, Corros. Sci.,, 57(2012), p. 241.

    Article  Google Scholar 

  18. M. Liu, X.Q. Cheng, X.G. Li, Z. Jin, and H.X. Liu, Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution, Constr. Build. Mater.,, 93(2015), p. 884.

    Article  Google Scholar 

  19. L. Freire, M.J. Carmezim, M.G.S. Ferreira, and M.F. Montemor, The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides, Electrochim. Acta,, 56(2011), No. 14, p. 5280.

    Article  Google Scholar 

  20. J.J. Shi, W. Sun, J.Y. Jiang, and Y.M. Zhang, Influence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solution, Constr. Build. Mater.,, 111(2016), p. 805.

    Article  Google Scholar 

  21. T. Nishimura, Nano structure of the rust formed on chromium bearing steel in concrete after wet and dry corrosion test, ISIJ Int.,, 55(2015), No. 8, p. 1739.

    Article  Google Scholar 

  22. J.K. Singh and D.D.N. Singh, The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH, Corros. Sci.,, 56(2012), p. 129.

    Article  Google Scholar 

  23. R.R. Hussain, A. Alhozaimy, A. Al-Negheimish, and D.D.N. Singh, Time-dependent variation of the electrochemical impedance for thermo-mechanically treated versus plain low alloy steel rebars in contact with simulated concrete pore solution, Constr. Build. Mater.,, 73(2014), p. 283.

    Article  Google Scholar 

  24. J.J. Shi and J. Ming, Influence of mill scale and rust layer on the corrosion resistance of low-alloy steel in simulated concrete pore solution, Int. J. Miner. Metall. Mater.,, 24(2017), No. 1, p. 64.

    Article  Google Scholar 

  25. B.G. Callaghan, The performance of a 12% chromium steel in concrete in severe marine environments, Corros. Sci.,, 35(1993), No. 5-8, p. 1535.

    Article  Google Scholar 

  26. M. Liu, X.Q. Cheng, G.C. Zhao, X.G. Li, and Y. Pan, Corrosion resistances of passive films on low-Cr steel and carbon steel in simulated concrete pore solution, Surf. Interface Anal.,, 48(2016), No. 9, p. 981.

    Article  Google Scholar 

  27. J.C. Zhang, J.Y. Jiang, Y. Li, J.J. Shi, L.F. Zuo, D.Q. Wang, and H. Ma, Passive films formed on seawater corrosion resistant rebar 00Cr10MoV in simulated concrete pore solutions, J. Chin. Soc. Corros. Prot.,, 36(2016), No. 5, p. 441.

    Google Scholar 

  28. J.Y. Zhong, M. Sun, D.B. Liu, X.G. Li, and T.Q. Liu, Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels, Int. J. Miner. Metall. Mater.,, 17(2010), No. 3, p. 282.

    Article  Google Scholar 

  29. F. Zhang, J.S. Pan, and C.J. Lin, Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution, Corros. Sci.,, 51(2009), No. 9, p. 2130.

    Article  Google Scholar 

  30. Z.Y. Liu, B. Wang, X.L. He, S.W. Yang, and J.Q. Chen, Corrosion resistance performance of molybdenum-containing weathering steel, J. Univ. Sci. Technol. Beijing,, 35(2013), No. 1, p. 61.

    Google Scholar 

  31. G.S. Duffó and S.B. Farina, Electrochemical behaviour of steel in mortar and in simulated pore solutions: Analogies and differences, Cem. Concr. Res.,, 88(2016), p. 211.

    Article  Google Scholar 

  32. H. Mahmoud, M. Sánchez, and M. Alonso, Ageing of the spontaneous passive state of 2304 duplex stainless steel in high-alkaline conditions with the presence of chloride, J. Solid State Electrochem.,, 19(2015), No. 10, p. 2961.

    Article  Google Scholar 

  33. Y.T. Tan, S.L. Wijesinghe, and D.J. Blackwood, Effect of molybdate on the passivation of carbon steel in alkaline solutions under open-circuit conditions, J. Electrochem. Soc., 163(2016), No. 10, p. C649.

    Article  Google Scholar 

  34. C.Q. Ye, R.G. Hu, S.G. Dong, X.J. Zhang, R.Q. Hou, R.G. Du, C.J. Lin, and J.S. Pan, EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions, J. Electroanal. Chem., 688(2013), p. 275.

    Article  Google Scholar 

  35. D.A. Koleva, N. Boshkov, K. van Breugel, and J.H.W. de Wit, Steel corrosion resistance in model solutions, containing waste materials, Electrochim. Acta,, 58(2011), p. 628.

    Article  Google Scholar 

  36. J.J. Shi and W. Sun, Electrochemical and analytical characterization of three corrosion inhibitors of steel in simulated concrete pore solutions, Int. J. Miner. Metall. Mater.,, 19(2012), No. 1, p. 38.

    Article  Google Scholar 

  37. D.E. Macphee and H.T. Cao, Theoretical description of impact of blast furnace slag (BFS) on steel passivation in concrete, Mag. Concr. Res.,, 45(1993), No. 162, p. 63.

    Article  Google Scholar 

  38. L. Li and A.F. Sagues, Chloride corrosion threshold of reinforcing steel in alkaline solutions-cyclic polarization behavior, Corrosion,, 58(2002), No. 4, p. 305.

    Article  Google Scholar 

  39. L. Veleva, M.A. Alpuche-Aviles, M.K. Graves-Brook, and D.O. Wipf, Comparative cyclic voltammetry and surface analysis of passive films grown on stainless steel 316 in concrete pore model solutions, J. Electroanal. Chem.,, 537(2002), No. 1-2, p. 85.

    Article  Google Scholar 

  40. M. Sánchez, J. Gregori, M. Alonso, J.J. García-Jareño, and F. Vicente, Anodic growth of passive layers on steel rebars in an alkaline medium simulating the concrete pores, Electrochim. Acta,, 52(2006), No. 1, p. 47.

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (Nos. 51461135001 and 51678144), the Major State Basic Research Development Program of China (No. 2015CB655100), the Natural Science Foundation of Jiangsu Province (No. BK20161420), the Industry-University Research Cooperative Innovation Fund of Jiangsu Province (No. BY2013091), and the China- Japan Research Cooperative Program by Ministry of Science and Technology of China (No. 2016YFE0118200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-jie Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Jj., Ming, J. & Liu, X. Pitting corrosion resistance of a novel duplex alloy steel in alkali-activated slag extract in the presence of chloride ions. Int J Miner Metall Mater 24, 1134–1144 (2017). https://doi.org/10.1007/s12613-017-1504-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1504-4

Keywords

Navigation