Skip to main content
Log in

An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr3+ removal capacity

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

A simple and practical method for the synthesis of zeolite 4A from bauxite tailings is presented in this paper. Systematic investigations were carried out regarding the capacity of zeolite 4A to remove Cr(III) from aqueous solutions with relatively low initial concentrations of Cr(III) (5–100 mg·L−1). It is found that the new method is extremely cost-effective and can significantly contribute in decreasing environmental pollution caused by the dumping of bauxite tailings. The Cr(III) removal capacity highly depends on the initial pH value and concentration of Cr(III) in the solution. The maximum removal capacity of Cr(III) was evaluated to be 85.1 mg·g−1 for zeolite 4A, measured at an initial pH value of 4 and an initial Cr(III) concentration of 5 mg·L−1. This approach enables a higher removal capacity at lower concentrations of Cr(III), which is a clear advantage over the chemical precipitation method. The removal mechanism of Cr(III) by zeolite 4A was examined. The results suggest that both ion exchange and the surface adsorption-crystallization reaction are critical steps. These two steps collectively resulted in the high removal capacity of zeolite 4A to remove Cr(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. Fendorf, Surface reactions of chromium in soils and waters, Geoderma, 67(1995) No. 1-2, p. 55.

    Article  Google Scholar 

  2. I. J. Buerge and S. J. Hug, Influence of mineral surfaces on chromium(VI) reduction by iron(II), Environ. Sci. Technol., 33(1999), No. 23, p. 4285.

    Article  Google Scholar 

  3. T. Hu and Y. Y. Li, Advance in Cr-containing wastewater treatments, Pollut. Control Technol., 18(2005), No. 4, p. 5.

    Google Scholar 

  4. D. J. Wang and X. Y. He, Progress of the chromic wastewater treatment processes, Anhui Chem. Ind., 33(2007), No. 1, p. 12.

    Google Scholar 

  5. H. Q. Zhang, K. G. Zhou, and Y. D. Wu, Removal of Cr6+ and Mn2+ from electrolytic manganese wastewater, Nonferrous Met. Sci. Eng., 5(2014), No. 3, p. 9.

    Article  Google Scholar 

  6. N. B. Guo, M. C. Jia, and X. T. Dong, Treatment of chromium- containing radioactive wastewater by redox-precipitation ?ultrafiltration method, J. Wuhan Univ. Technol. Transp. Sci. Eng., 37(2013), No. 1, p. 196.

    Google Scholar 

  7. E. Erdem, N. Karapinar, and R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 280(2004), No. 2, p. 309.

    Article  Google Scholar 

  8. S. B. Wang and Y. L. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156(2010), No. 1, p. 11.

    Article  Google Scholar 

  9. S. F. Mousavi, M. Jafari, M. Kazemimoghadam, and T. Mohammadi, Template free crystallization of zeolite Rho via hydrothermal synthesis: effects of synthesis time, synthesis temperature, water content and alkalinity, Ceram. Int., 39(2013), No. 6, p. 7149.

    Article  Google Scholar 

  10. F. Hasan, R. Singh, G. Li, D. Y. Zhao, and P. A. Webley, Direct synthesis of hierarchical LTA zeolite via a low crystallization and growth rate technique in presence of cetyltrimethylammonium bromide, J. Colloid Interface Sci., 382(2012), No. 1, p. 1.

    Article  Google Scholar 

  11. C. Kosanovic, B. Subotic, and A. Ristic, Kinetic analysis of temperature-induced transformation of zeolite 4A to low-carnegieite, Mater. Chem. Phys., 86(2004), No. 2-3, p. 390.

    Article  Google Scholar 

  12. C. O. Arean, G. T. Palomino, M. R. L. Carayol, A. Pulido, M. Rubeš, O. Bludský, and P. Nachtigall, Hydrogen adsorption on the zeolite Ca-A: DFT and FT-IR investigation, Chem. Phys. Lett., 477(2009), No. 1-3, p. 139.

    Article  Google Scholar 

  13. L. Damjanovic, V. Rakic, V. Rac, D. Stošic, and A. Auroux, The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents, J. Hazard. Mater., 184(2010), No. 1-3, p. 477.

    Article  Google Scholar 

  14. I. A. Khan and K. F. Loughlin, Kinetics of sorption in deactivated zeolite crystal adsorbents, Comput. Chem. Eng., 27(2003), No. 5, p. 689.

    Article  Google Scholar 

  15. A. Baldansuren, R. A. Eichel, and E. Roduner, Nitrogen oxide reaction with six-atom silver clusters supported on LTA zeolite, Phys. Chem. Chem. Phys, 11(2009), No. 31, p. 6664.

    Article  Google Scholar 

  16. H. S. Sherry and H. F. Walton, The ion-exchange properties of zeolites. II. Ion exchange in the synthetic zeolite Linde 4A, J. Phys. Chem., 71(1967), No. 5, p. 1457.

    Article  Google Scholar 

  17. M. W. Ackley, S. U. Rege, and H. Saxena, Application of natural zeolites in the purification and separation of gases, Microporous Mesoporous Mater., 61(2003), No. 1-3, p. 25.

    Article  Google Scholar 

  18. P. Vareltzis, E. S. Kikkinides, and M. C. Georgiadis, On the optimization of gas separation processes using zeolite membranes, Chem. Eng. Res. Des., 81(2003), No. 5, p. 525.

    Article  Google Scholar 

  19. T. Du, L. Y. Liu, P. Xiao, S. Che, and H. M. wang, Preparation of zeolite NaA for CO2 capture from nickel laterite residue, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 820.

    Google Scholar 

  20. S. Aguado, G. Bergeret, C. Daniel, and D. Farrusseng, Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A, J. Am. Chem. Soc., 134(2012), No. 36, p. 14635.

    Article  Google Scholar 

  21. K. S. Hui and C. Y. H. Chao, Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents, J. Hazard. Mater., 137(2006), No. 1, p. 401.

    Article  Google Scholar 

  22. H. Upadek, E. Smulders, and J. Poethkow, Laundry detergent additive containing zeolite, polycarboxylate, and perborate, Zeolites, 11(1991), No. 1, p. 90.

    Article  Google Scholar 

  23. C. Covarrubias, R. Arriagada, J. Yáñez, R. García, M. Angélica, S. D. Barros, P. Arroyo, and E. F. Sousa-Aguiar, Removal of chromium(III) from tannery effluents, using a system of packed columns of zeolite and activated carbon, J. Chem. Technol. Biotechnol., 80(2005), No. 8, p. 899.

    Article  Google Scholar 

  24. Q. H. Lu and Y. H. Hu, Synthesis of aluminum tri-polyphosphate anticorrosion pigment from bauxite tailings, Trans. Nonferrous Met. Soc. China, 22(2012), No. 22, p. 483.

    Article  Google Scholar 

  25. D. Y. Ma, Z. D. Wang, M. Guo, M. Zhang, and J. B. Liu, Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application, Waste Manage, 34(2014), No. 11, p. 2365.

    Article  Google Scholar 

  26. C. Lao-Luque, M. Solé, X. Gamisans, C. Valderrama, and A. D. Dorado, Characterization of chromium(III) removal from aqueous solutions by an immature coal (leonardite). Toward a better understanding of the phenomena involved, Clean Technol. Environ. Policy, 16(2014), No. 1, p. 127.

    Article  Google Scholar 

  27. D. Rai, B. M. Sass, and D. A. Moore, Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide, Inorg. Chem., 26(1987), No. 3, p. 345.

    Article  Google Scholar 

  28. K. S. Hui, C. Y. H. Chao, and S. C. Kot, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., 127(2005), No. 1-3, p. 89.

    Article  Google Scholar 

  29. American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, Washington, D. C., 1995.

  30. I. J. Gal, O. Jankovic, S. Malcic, P. Radovanov, and M. Todorovic, Ion-exchange equilibria of synthetic 4A zeolite with Ni2+, CO2+, Cd2+ and Zn2+ ions, Trans. Faraday Soc., 67(1971), p. 999.

    Article  Google Scholar 

  31. N. H. Heo, W. Cruz-Patalinghug, and K. Seff, Crystal structure of zeolite 4A ion exchanged to the limit of its stability with nickel(II), J. Phys. Chem., 90(1986), No. 17, p. 3931.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Pc., Shen, Xj., Li, Y. et al. An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr3+ removal capacity. Int J Miner Metall Mater 23, 850–857 (2016). https://doi.org/10.1007/s12613-016-1300-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1300-6

Keywords

Navigation