Skip to main content
Log in

Microstructure simulation of rapidly solidified ASP30 high-speed steel particles by gas atomization

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this study, the microstructure evolution of rapidly solidified ASP30 high-speed steel particles was predicted using a simulation method based on the cellular automaton-finite element (CAFE) model. The dendritic growth kinetics, in view of the characteristics of ASP30 steel, were calculated and combined with macro heat transfer calculations by user-defined functions (UDFs) to simulate the microstructure of gas-atomized particles. The relationship among particle diameter, undercooling, and the convection heat transfer coefficient was also investigated to provide cooling conditions for simulations. The simulated results indicated that a columnar grain microstructure was observed in small particles, whereas an equiaxed microstructure was observed in large particles. In addition, the morphologies and microstructures of gas-atomized ASP30 steel particles were also investigated experimentally using scanning electron microscopy (SEM). The experimental results showed that four major types of microstructures were formed: dendritic, equiaxed, mixed, and multi-droplet microstructures. The simulated results and the available experimental data are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. García-Escorial and M. Lieblich, Microstructural characterisation of Ni75Al25 and Ni31.5Al68.5 powder particles produced by gas atomisation, J. Alloys Compd., 586(2014), No. S1, p. S489.

    Article  Google Scholar 

  2. M. Yang, C.J. Song, Y.X. Dai, L. Zhu, K.F. Li, and Q.J. Zhai, Microstructural evolution of gas atomized Fe25Cr3.2C alloy powders, J. Iron Steel Res. Int., 18(2011), No. 2, p. 75.

    Article  Google Scholar 

  3. C.J. Song, Y.Y. Guo, L. Zhu, K.F. Li, M. Yang, and Q.J. Zhai, Structure evolution of the atomized powders of Fe-25Cr-3.9C alloy with addition of ni and b elements, Adv. Mater. Res., 239-242(2011), p. 44.

    Article  Google Scholar 

  4. M. Behúlová, J. Mesárošová, and P. Grgac, Analysis of the influence of the gas velocity, particle size and nucleation temperature on the thermal history and microstructure development in the tool steel during atomization, J. Alloys Compd., 615(2014), Suppl. 1, p. S217.

    Article  Google Scholar 

  5. M.R. Rokni, C.A. Widener, and G.A. Crawford, Microstructural evolution of 7075 Al gas atomized powder and high-pressure cold sprayed deposition, Surf. Coat. Technol., 251(2014), p. 254.

    Article  Google Scholar 

  6. C.J. Song, K.F. Li, K. Xie, W. Lu, S.C. Zhao, Q.Y. Han, and Q.J. Zhai, The effect of the nucleation ability on solidified microstructures of gas-atomized Fe-6.5 wt.%Si alloy powder, Powder Technol., 263(2014), p. 31.

    Article  Google Scholar 

  7. D. Tourret, G. Reinhart, C.A. Gandin, G.N. Iles, U. Dahlborg, M. Calvo-Dahlborg, and C.M. Bao, Gas atomization of Al-Ni powders: solidification modeling and neutron diffraction analysis, Acta Mater., 59(2011), No. 17, p. 6658.

    Article  Google Scholar 

  8. M. Kusý, M. Behulova, and P. Grgac, Influence of the thermal history of a particle during atomization on the morphology of carbides in a hypereutectic iron based alloy, J. Alloys Compd., 536(2012), p. S541.

    Article  Google Scholar 

  9. Q. Xu and E.J. Lavernia, Influence of nucleation and growth phenomena on microstructural evolution during droplet-based deposition, Acta Mater., 49(2001), No. 18, p. 3849.

    Article  Google Scholar 

  10. A.F. Norman, K. Eckler, A. Zambon, F. Gärtner, S.A. Moir, E. Ramous, D.M. Herlach, and A.L. Greer, Application of microstructure- selection maps to droplet solidification: a case study of the Ni–Cu system, Acta Mater., 46(1998), No. 10, p. 3355.

    Article  Google Scholar 

  11. A. Fedrizzi, M. Pellizzari, and M. Zadra, Influence of particle size ratio on densification behaviour of AISI H13/AISI M3:2 powder mixture, Powder Technol., 228(2012), p. 435.

    Article  Google Scholar 

  12. C.A. Gandin and M. Rappaz, A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes, Acta Metall. Mater., 42(1994), No. 7, p. 2233.

    Article  Google Scholar 

  13. M. Rappaz and C.A. Gandin, Probabilistic modelling of microstructure formation in solidification processes, Acta Metall. Mater., 41(1993), No. 2, p. 345.

    Article  Google Scholar 

  14. W. Kurz, B. Giovanola, and R. Trivedi, Theory of microstructural development during rapid solidification, Acta Mater., 34(1986), No. 5, p. 823.

    Article  Google Scholar 

  15. W. Boettinger, S. Coriell, and R. Trivedi, Rapid Solidification Processing: Principles and Technologies IV, Edited by R. Mehrabian and P. Parrish, Claitor’s Pub, Baton Rouge, LA, 1988, p. 13.

  16. X.R. Liu, C.D. Cao, and B. Wei, Microstructure evolution and solidification kinetics of undercooled Co–Ge eutectic alloys, Scripta Mater., 46(2002), No. 1, p. 13.

    Article  Google Scholar 

  17. P.K. Galenko and M.D. Krivilyov, Modeling of a transition to diffusionless dendritic growth in rapid solidification of a binary alloy, Comput. Mater. Sci., 45(2009), No. 4, p. 972.

    Article  Google Scholar 

  18. A.M. Mullis, Prediction of the operating point of dendrites growing under coupled thermosolutal control at high growth velocity, Phys. Rev. E, 83(2011), art. No. 061601.

  19. N. Liu, F. Liu, G.C. Yang, Y.Z. Chen, C.L. Yang, J.S. Li, and Y.H. Zhou, Dendrite growth in undercooled Fe–Co melt, J. Alloys Compd., 455(2008), No. 1-2, p. L6.

    Article  Google Scholar 

  20. C. Panofen and D.M. Herlach, Solidification of highly undercooled Si and Si–Ge melts, Mater. Sci. Eng. A, 449–451(2007), p. 699.

    Article  Google Scholar 

  21. Y. Ruan and F.P. Dai, Rapid dendrite growth subjected to multi-solute trapping in an undercooled Fe-based quaternary alloy, Intermetallics, 25(2012), p. 80.

    Article  Google Scholar 

  22. Ph. Thévoz, J.L. Desbiolles, and M. Rappaz, Modeling of equiaxed microstructure formation in casting, Metall. Trans. A, 20(1989), No. 2, p. 311.

    Article  Google Scholar 

  23. E.S. Lee and S. Ahn, Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming, Acta Mater., 42(1994), No. 9, p. 3231.

    Article  Google Scholar 

  24. W.B. Guan, Y.L. Gao, Q.J. Zhai, and K.D. Xu, Effect of droplet size on nucleation undercooling of molten metals, J. Mater. Sci., 39(2004), No. 14, p. 4633.

    Article  Google Scholar 

  25. P. Mathur, D. Apelian, and A. Lawley, Analysis of the spray deposition process, Acta Mater., 37(1989), No. 2, p. 429.

    Article  Google Scholar 

  26. C.G. Levi and R. Mehrabian, Heat flow during rapid solidification of undercooled metal droplets, Metall. Trans. A, 13(1982), No. 2, p. 221.

    Article  Google Scholar 

  27. M. Behulova, R. Moravcik, M. Kusy, L. Caplovic, P. Grgac, and L. Stancek, Influence of atomisation on solidification microstructures in the rapidly solidified powder of the Cr–Mo–V tool steel, Mater. Sci. Eng. A, 304(2001), No. 1, p. 540.

    Article  Google Scholar 

  28. R. Trivedi, F. Jin, and I.E. Anderson, Dynamical evolution of microstructure in finely atomized droplets of Al-Si alloys, Acta Mater., 51(2003), No. 2, p. 289.

    Article  Google Scholar 

  29. S. Wisutmethangoon, T. Plookphol, and P. Sungkhaphaitoon, Production of SAC305 powder by ultrasonic atomization, Powder Technol., 209(2011), No. 1-3, p. 105.

    Article  Google Scholar 

  30. R.F. Cochrane, P.V. Evans, and A.L. Greer, Competitive growth analysis of phase formation in Al-8wt.% Fe, Mater. Sci. Eng. A, 133(1991), p. 803.

    Article  Google Scholar 

  31. A. Zambon, B. Badan, G. Vedovato, and E. Ramous, Morphologies in gas-atomized Fe50Ni30Si10B10 amorphizable alloy powders, Mater. Sci. Eng. A, 304-306(2001), p. 452.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-yu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Wang, B., Yang, Zl. et al. Microstructure simulation of rapidly solidified ASP30 high-speed steel particles by gas atomization. Int J Miner Metall Mater 23, 294–302 (2016). https://doi.org/10.1007/s12613-016-1238-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1238-8

Keywords

Navigation