Skip to main content
Log in

Leaching of a copper flotation concentrate with ammonium persulfate in an autoclave system

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave system. The decomposition products of APS, active oxygen, and acidic medium were used to extract metals from the concentrate. Leaching experiments were performed to compare the availability of APS as an oxidizing agent for leaching of the concentrate under atmospheric conditions and in an autoclave system. Leaching temperature and APS concentration were found to be important parameters in both leaching systems. Atmospheric leaching studies showed that the metal extractions increased with the increase in APS concentration and temperature (up to 333 K). A similar tendency was determined in the autoclave studies up to 423 K. It was also determined that the metal extractions decreased at temperatures above 423 K due to the passivation of the particle surface by molten elemental sulfur. The results showed that higher copper extractions could be achieved using an autoclave system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Agnew and N.J. Welham, Oxidation of chalcopyrite by extended milling, Int. J. Miner. Process., 77(2005), No. 4, p. 208.

    Article  Google Scholar 

  2. M.S. Bafghi, A.H. Emami, and A. Zakeri, Effect of specific surface area of a mechanically activated chalcopyrite on its rate of leaching in sulfuric acid-ferric sulfate media, Metall. Mater. Trans. B, 44(2013), No. 5, p. 1166.

    Article  Google Scholar 

  3. P. BaláŽ, Mechanical activation in hydrometallurgy, Int. J. Miner. Process., 72(2003), No. 1–4, p. 341.

    Google Scholar 

  4. M. Al-Harahsheh, S. Kingman, and A. Al-Harahsheh, Ferric chloride leaching of chalcopyrite: synergetic effect of CuCl2, Hydrometallurgy, 91(2008), No. 1–4, p. 89.

    Article  Google Scholar 

  5. N. Hiroyoshi, M. Hirota, T. Hirajima, and M. Tsunekawa, A case of ferrous sulfate addition enhancing chalcopyrite leaching, Hydrometallurgy, 47(1997), No. 1, p. 37.

    Article  Google Scholar 

  6. R. Padilla, G. Rodríguez, and M.C. Ruiz, Copper and arsenic dissolution from chalcopyrite-enargite concentrate by sulfidation and pressure leaching in H2SO4-O2, Hydrometallurgy, 100(2010), No. 3–4, p. 152.

    Article  Google Scholar 

  7. D. Dreisinger and N. Abed, A fundamental study of the reductive leaching of chalcopyrite using metallic iron: Part I. Kinetic analysis, Hydrometallurgy, 66(2002), No. 1–3, p. 37.

    Article  Google Scholar 

  8. K.N. Han and X. Meng, Recovery of copper from its sulfides and other sources using halogen reagents and oxidants, Miner. Metall. Process., 20(2003), No. 3, p. 160.

    Google Scholar 

  9. N. Hiroyoshi, H. Miki, T. Hirajima, and M. Tsunekawa, Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions, Hydrometallurgy, 60(2001), No. 3, p. 185.

    Article  Google Scholar 

  10. Z.Y. Lu, M.I. Jeffrey, and F. Lawson, The effect of chloride ions on the dissolution of chalcopyrite in acidic solutions, Hydrometallurgy, 56(2000), No. 2, p. 189.

    Article  Google Scholar 

  11. N. Hiroyoshi, S. Kuroiwa, H. Miki, M. Tsunekawa, and T. Hirajima, Effects of coexisting metal ions on the redox potential dependence of chalcopyrite leaching in sulfuric acid solutions, Hydrometallurgy, 87(2007), No. 1–2, p. 1.

    Article  Google Scholar 

  12. N. Hiroyoshi, H. Kitagawa, and M. Tsunekawa, Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions, Hydrometallurgy, 91(2008), No. 1–4, p. 144.

    Article  Google Scholar 

  13. M.D. Sokić, B. Marković, and D. Živković, Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid, Hydrometallurgy, 95(2009), No. 3–4, p. 273.

    Google Scholar 

  14. G. Bjorling, I. Faldt, E. Lindgren, and I. Toromanov, A nitric acid route in combination with solvent extraction for hydrometallurgical treatment of chalcopyrite, [in] Extractive Metallurgy of Copper, AIME, New York, 1976, p. 725.

    Google Scholar 

  15. Y.F. Cai, X.M. Chen, J.Y. Ding, and D.S. Zhou, Leaching mechanism for chalcopyrite in hydrochloric acid, Hydrometallurgy, 113–114(2012), p. 109.

    Article  Google Scholar 

  16. J. Liddicoat and D. Dreisinger, Chloride leaching of chalcopyrite, Hydrometallurgy, 89(2007), No. 3–4, p. 323.

    Article  Google Scholar 

  17. J.M. Lu and D. Dreisinger, Copper chloride leaching from chalcopyrite and bornite concentrates containing high levels of impurities and minor elements, Hydrometallurgy, 138(2013), p. 40.

    Article  Google Scholar 

  18. M. Lundström, J. Aromaa, O. Forsén, O. Hyvärinen, and M.H. Barker, Leaching of chalcopyrite in cupric chloride solution, Hydrometallurgy, 77(2005), No. 1–2, p. 89.

    Article  Google Scholar 

  19. D. Maurice and J.A. Hawk, Ferric chloride leaching of mechanically activated chalcopyrite, Hydrometallurgy, 49(1998), No. 1–2, p. 103.

    Article  Google Scholar 

  20. H. Miki and M. Nicol, The dissolution of chalcopyrite in chloride solutions: IV. The kinetics of the auto-oxidation of copper (I), Hydrometallurgy, 105(2011), No. 3–4, p. 246.

    Article  Google Scholar 

  21. I. Iwasaki, T. Tamagawa, S.H. Tabaian, N.X. Fu, and M. Kobayashi, Extraction of Copper from Chalcopyrite Concentrates without Sulfuric Acid Generation via Chlorination: I. Gaseous Chlorination of Sulfide Concentrates, University of Minnesota Duluth, Natural Resources Research Institute, Coleraine Minerals Research Laboratory, Technical Report NRRI/TR-2000/57, 2000, p. 15.

    Google Scholar 

  22. K.K. Yoo, S.K. Kim, J.C. Lee, M. Ito, M. Tsunekawa, and N. Hiroyoshi, Effect of chloride ions on leaching rate of chalcopyrite, Miner. Eng., 23(2010), No. 6, p. 471.

    Article  Google Scholar 

  23. D. Feng and J.S.J. Van Deventer, Leaching behaviour of sulphides in ammoniacal thiosulphate systems, Hydrometallurgy, 63(2002), No. 2, p. 189.

    Article  Google Scholar 

  24. K. Sarveswara Rao and H.S. Ray, A new look at characterisation and oxidative ammonia leaching behaviour of multimetal sulphides, Miner. Eng., 11(1998), No. 11, p. 1011.

    Article  Google Scholar 

  25. E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, and A. Ballester, Leaching of chalcopyrite with ferric ion: Part I. General aspects, Hydrometallurgy, 93(2008), p. 81.

    Article  Google Scholar 

  26. E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, and A. Ballester, Leaching of chalcopyrite with ferric ion: Part II. Effect of redox potential, Hydrometallurgy, 93(2008), No. 3–4, p. 88.

    Article  Google Scholar 

  27. T. Havlík, M. Škrobian, P. BaláŽ, and R. Kammel, Leaching of chalcopyrite concentrate with ferric chloride, Int. J. Miner. Process., 43(1995), No. 1–2, p. 61.

    Article  Google Scholar 

  28. J.M. Lu and D. Dreisinger, Copper leaching from chalcopyrite concentrate in Cu(II)/Fe(III) chloride system, Miner. Eng., 45(2013), p. 185.

    Article  Google Scholar 

  29. R.P. Hackl, D.B. Dreisinger, E. Peters, and J.A. King, Passivation of chalcopyrite during oxidative leaching in sulfate media, Hydrometallurgy, 39(1995), No. 1–3, p. 25.

    Article  Google Scholar 

  30. S.M.J. Koleini, V. Aghazadeh, and Å. Sandström, Acidic sulphate leaching of chalcopyrite concentrates in presence of pyrite, Miner. Eng., 24(2011), No. 5, p. 381.

    Article  Google Scholar 

  31. A. Ahmadi, M. Ranjbar, and M. Schaffie, Catalytic effect of pyrite on the leaching of chalcopyrite concentrates in chemical, biological and electrobiochemical systems, Miner. Eng., 34(2012), p. 11.

    Article  Google Scholar 

  32. G. Nazari, D.G. Dixon, and D.B. Dreisinger, The mechanism of chalcopyrite leaching in the presence of silver-enhanced pyrite in the Galvanox? process, Hydrometallurgy, 113–114(2012), p. 122.

    Article  Google Scholar 

  33. P.T. Davey and T.R. Scott, Removal of iron from leach liquors by the “Goethite” process, Hydrometallurgy, 2(1976), No. 1, p. 25.

    Article  Google Scholar 

  34. V.G. Papangelakis, D. Georgio, and D.H. Rubisov, Control of iron during the sulfuric acid pressure leaching of limonitic laterites, [in] Iron Control in Hydrometallurgy, CIM, Ottawa, 1996, p. 263.

    Google Scholar 

  35. D.H. Rubisov and V.G. Papangelakis, Sulfuric acid pressure leaching of laterites-prediction of metal solubilities and speciation analysis “at temperature”, [in] EPD Congress 1999, Warrendale, 1999, p. 535.

    Google Scholar 

  36. A. Akcil, A preliminary research on acid pressure leaching of pyritic copper ore in Kure Copper Mine, Turkey, Miner. Eng., 15(2002), No. 12, p. 1193.

    Article  Google Scholar 

  37. R. Padilla, P. Pavez, and M.C. Ruiz, Kinetics of copper dissolution from sulfidized chalcopyrite at high pressures in H2SO4-O2, Hydrometallurgy, 91(2008), No. 1–4, p. 113.

    Article  Google Scholar 

  38. R.G. McDonald and D.M. Muir, Pressure oxidation leaching of chalcopyrite: Part I. Comparison of high and low temperature reaction kinetics and products, Hydrometallurgy, 86(2007), No. 3–4, p. 191.

    Article  Google Scholar 

  39. R.G. McDonald and D.M. Muir, Pressure oxidation leaching of chalcopyrite: Part II. Comparison of medium temperature kinetics and products and effect of chloride ion, Hydrometallurgy, 86(2007), No. 3–4, p. 206.

    Article  Google Scholar 

  40. K.T. Perek and F. Arslan, Extraction of metallic values from Küre massive rich copper ore with pressure leaching, ITU Dergisi/d Mühendislik, 2(2003), p. 65.

    Google Scholar 

  41. M.C. Ruiz, E. Gallardo, and R. Padilla, Copper extraction from white metal by pressure leaching in H2SO4-FeSO4-O2, Hydrometallurgy, 100(2009), No. 1–2, p. 50.

    Article  Google Scholar 

  42. K.H. Park, D. Mohapatra, B.R. Reddy, and C.W. Nam, A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu-Ni-Co-Fe) matte, Hydrometallurgy, 86(2007), No. 3–4, p. 164.

    Article  Google Scholar 

  43. E. Jackson, Hydrometallurgical Extraction and Reclamation, Ellis Harwood Ltd., New York, 1986, p. 56.

    Google Scholar 

  44. J.W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Lowe and Brydone Printers Ltd., London, 1960, Vol. 10.

    Google Scholar 

  45. R.L. Johnson, P.G. Tratnyek, and R.O. Johnson, Persulfate persistence under thermal activation conditions, Environ. Sci. Technol., 42(2008), No. 24, p. 9350.

    Article  Google Scholar 

  46. G.H. Jeffery, J. Basset, J. Mendham, and R.C. Denny, Vogel’s Textbook of Quantitative Chemical Analysis, 5th Ed., John Wiley & Sons Inc., NewYork, 1989, p. 374.

    Google Scholar 

  47. M.N. Babu, K.K. Sahu, and B.D. Pandey, Zinc recovery from sphalerite concentrate by direct oxidative leaching with ammonium, sodium and potassium persulphates, Hydrometallurgy, 64(2002), No. 2, p. 119.

    Article  Google Scholar 

  48. F. Dakubo, J.C. Baygents, and J. Farrell, Peroxodisulfate assisted leaching of chalcopyrite, Hydrometallurgy, 121–124 (2012), p. 68.

    Article  Google Scholar 

  49. J.P. Lotens and E. Wesker, The behaviour of sulphur in the oxidative leaching of sulphidic minerals, Hydrometallurgy, 18(1987), No. 1, p. 39.

    Article  Google Scholar 

  50. M.C. Ruiz, E. Abarzúa, and R. Padilla, Oxygen pressure leaching of white metal, Hydrometallurgy, 86(2007), No. 3–4, p. 131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deniz Turan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deniz Turan, M., Soner Altundoğan, H. Leaching of a copper flotation concentrate with ammonium persulfate in an autoclave system. Int J Miner Metall Mater 21, 862–870 (2014). https://doi.org/10.1007/s12613-014-0982-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0982-x

Keywords

Navigation