Skip to main content
Log in

Effect of hydrolysis conditions on hydrous TiO2 polymorphs precipitated from a titanyl sulfate and sulfuric acid solution

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfuric acid solution was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The results revealed that the feeding rate of the titanyl sulfate stock solution, the concentration of sulfuric acid, and the seed dosage of rutile crystal could significantly affect the hydrolysis rate, thus influencing the titania crystal phase. Hydrous TiO2 in the form of rutile, anatase, or the mixture of both could be obtained in solutions of low titanium concentrations and 2.5wt% to 15wt% sulfuric acid at 100°C. When the hydrolysis rate of titanium expressed by TiO2 was more than or equal to 0.04 g/(L·min), the hydrolysate was almost phase-pure anatase, while the main phase state was rutile when the hydrolysis rate was less than or equal to 0.01 g/(L·min). With the hydrolysis rate between 0.02 and 0.03 g/(L·min), the hydrolysate contained almost equal magnitude of rutile and anatase. It seems that although rutile phase is thermodynamically stable in very acidic solutions, anatase is a kinetically stable phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95(1995), No.1, p.69.

    Article  CAS  Google Scholar 

  2. M. Muneer, S. Das, V.B. Manilal, and A. Haridas, Photocatalytic degradation of waste-water pollutants: titanium dioxide-mediated oxidation of methyl vinyl ketone, J. Photochem. Photobiol. A, 63(1992), No.1, p.107.

    Article  CAS  Google Scholar 

  3. P. Pichat, J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler, and C. Gaysse, Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis, Catal. Today, 63(2000), No.2–4, p.363.

    Article  CAS  Google Scholar 

  4. C.J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, Nanocrystalline titanium oxide electrodes for photovoltaic applications, J. Am. Ceram. Soc., 80(1997), No.12, p.3157.

    Article  Google Scholar 

  5. R.R. Bacsa and M. Gratzel, Rutile formation in hydrothermally crystallized nanosized titania, J. Am. Ceram. Soc., 79(1996), No.8, p.2185.

    Article  CAS  Google Scholar 

  6. H.Z. Zhang and J.F. Banfield, Polymorphic transformations and particle coarsening in nanocrystalline titania ceramic powders and membranes, J. Phys. Chem. C, 111(2007), No.18, p.6621.

    Article  CAS  Google Scholar 

  7. H.Z. Zhang and J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2, J. Phys. Chem. B, 104(2000), No.15, p.3481.

    Article  CAS  Google Scholar 

  8. H.Z. Zhang and J.F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem., 8(1998), No.9, p.2073.

    Article  CAS  Google Scholar 

  9. A.K. Vasudevan, P.P. Rao, S.K. Ghosh, G.M. Anilkumar, A.D. Damodaran, and K.G.K. Warrier, Effect of addition of silver on anatase-rutile transformation as studied by impedance spectroscopy, J. Mater. Sci. Lett., 16(1997), No.1, p.8.

    CAS  Google Scholar 

  10. M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, and H.J. Whitfield, Energetics of nanocrystalline TiO2, Proc. Natl. Acad. Sci. USA, 99(2002), p.6476.

    Article  CAS  Google Scholar 

  11. P.K. Naicker, P.T. Cummings, H.Z. Zhang, and J.F. Banfield, Characterization of titanium dioxide nanoparticles using molecular dynamics simulations, J. Phys. Chem. B, 109(2005), No.32, p.15243.

    Article  CAS  Google Scholar 

  12. K.N.P. Kumar, Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites, Scripta Metall. Mater., 32(1995), No.6, p.873.

    Article  CAS  Google Scholar 

  13. A.A. Gribb and J.F. Banfield, Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2, Am. Mineral., 82(1997), No.7–8, p.717.

    CAS  Google Scholar 

  14. F. Bregani, C. Casale, L.E. Depero, I. Natali-sora, D. Robba, L. Sangaletti, and G.P. Toledo, Temperature effects on the size of anatase crystallites in Mo-TiO2 and W-TiO2 powders, Sens. Actuators B, 31(1996), No.1–2, p.25.

    Article  Google Scholar 

  15. K. Yanagisawa and J. Ovenstone, Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature, J. Phys. Chem. B, 103(1999), No.37, p.7781.

    Article  CAS  Google Scholar 

  16. M.P. Finnegan, H.Z. Zhang, and J.F. Banfield, Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy, J. Phys. Chem. C, 111(2007), No.5, p.1962.

    Article  CAS  Google Scholar 

  17. E. Santacesaria, M. Tonello, G. Storti, R.C. Pace, and S.J. Carra, Kinetics of titaniumdioxideprecipitation by thermalhydrolysis, J. Colloid Interface Sci., 111(1986), No.1, p.44.

    Article  CAS  Google Scholar 

  18. E. Matijević, M. Budnick, and L. Meites, Preparation and mechanism of formation of titanium dioxide hydrosols of narrow size distribution, J. Colloid Interface Sci., 61(1977), No.2, p.302.

    Article  Google Scholar 

  19. L.I. Bekkerman, I.P. Dobrovol’skii, and A.A. Ivakin, Effect of the composition of titanium(IV) solution and conditions of precipitation on the structure of the solid phase, Russ. J. Inorg. Chem., 21(1976), p.223.

    Google Scholar 

  20. W. Qin, J.J. Liu, S.L. Zuo, Y.C. Yu, and Z.P. Hao, Solvothermal synthesis of nanosized TiO2 particles with different crystal structures and their photocatalytic activities, J. Inorg. Mater., 22(2007), No.5, p.931.

    CAS  Google Scholar 

  21. S.D. Park, Y.H. Cho, W.W. Kim, and Kim S.J., Understanding of homogeneous spontaneous precipitation for monodispersed TiO2 ultrafine powders with rutile phase around room temperature, J. Solid State Chem., 146(1999), No.1, p.230.

    Article  CAS  Google Scholar 

  22. A.W. Hixson and J.D. Stetkewicz, Titanium sulfate solutions, Ind. Eng. Chem., 32(1940), No.7, p.1009.

    Article  CAS  Google Scholar 

  23. A.W. Hixson and W.W. Plechner, Hydrated titanium oxide, thermal precipitation from titanium sulfate solutions, Ind. Eng. Chem., 25(1933), No.3, p.262.

    Article  CAS  Google Scholar 

  24. A.W. Hixson and R.E.C. Fredrickson, Hydrolysis of titanyl sulfate solutions, Ind. Eng. Chem., 37(1945), No.7, p.678.

    Article  CAS  Google Scholar 

  25. B. Jelks, Titanium: Its Occurrence, Chemistry and Technology, Ronald Press, New York, 1966, p.168.

    Google Scholar 

  26. J. Amigó, J. Clausell, V. Esteve, J.M. Delgado, M.M. Reventós, L.E. Ochando, T. Debaerdemaeker, and F. Martí, X-ray powder diffraction phase analysis and thermomechanical properties of silica and alumina porcelains, J. Eur. Ceram. Soc., 24(2004), No.1, p.75.

    Article  Google Scholar 

  27. R.J. Hill and C.J. Howard, Quantitative phase analysis from neutron powder diffraction data using the Rietveld method, J. Appl. Cryst., 20(1987), No.6, p.467.

    Article  CAS  Google Scholar 

  28. L.J. Kirwan, F.A. Deeney, G.M. Croke, and K. Hodnett, Characterisation of various Jamaican bauxite ores by quantitative Rietveld X-ray powder diffraction and 57Fe Mossbauer spectroscopy, Int. J. Miner. Process., 91(2009), No.1–2, p.14.

    Article  CAS  Google Scholar 

  29. L. Lutterotti and P. Scardi, Simultaneous structure and size-strain refinement by the Rietveld method, J. Appl. Cryst., 23(1990), No.4, p.246.

    Article  CAS  Google Scholar 

  30. H. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Cryst., 22(1967), No.1, p.151.

    Article  CAS  Google Scholar 

  31. K. Bourikas, T. Hiemstra, and W.H. Van Riemsdijk, Ion pair formation and primary charging behavior of titanium oxide (anatase and rutile), Langmuir, 17(2001), No.3, p.749.

    Article  CAS  Google Scholar 

  32. B. Katerska, G. Exner, E. Perez, and M.N. Krasteva, Cooling rate effect on the phase transitions in a polymer liquid crystal: DSC and real-time MAXS and WAXD experiments, Eur. Polym. J., 46(2010), No.7, p.1623.

    Article  CAS  Google Scholar 

  33. V. Andronis and G. Zografi, Crystal nucleation and growth of indomethacin polymorphs from the amorphous state, J. Non Cryst. Solids, 271(2000), No.3, p.236.

    Article  CAS  Google Scholar 

  34. K. Yanagisawa and J. Ovenstone, Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature, J. Phys. Chem. B, 103(1999), No.37, p.7781.

    Article  CAS  Google Scholar 

  35. C. Wang, Z.X. Deng, G.H. Zhang, S.S. Fan, and Y.D. Li, Synthesis of nanocrystalline TiO2 in alcohols, Powder Technol., 125(2002), No.1, p.39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Li.

Additional information

This work was financially supported by a grant from the Ph.D. Programs Foundation of the Ministry of Education of China (No. 20070610125).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Liang, B., Lü, L. et al. Effect of hydrolysis conditions on hydrous TiO2 polymorphs precipitated from a titanyl sulfate and sulfuric acid solution. Int J Miner Metall Mater 19, 642–650 (2012). https://doi.org/10.1007/s12613-012-0607-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0607-1

Keywords

Navigation