Skip to main content
Log in

Deformation behavior and microstructural evolution during hot compression of an α+β Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The effect of processing parameters on the flow response and microstructural evolution of the α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si has been studied by conducting isothermal hot compressive tests at a strain rate of 0.01–10 s−1 at 860–1100°C. The true stress-true strain curves of the sample hot-compressed in the α+β phase region exhibit a peak stress followed by continuous flow softening, whereas in the β region, the flow stress attains a steady-state regime. At a strain rate of 10 s−1, the alloy exhibits plastic flow instabilities. According to the kinetic rate equation, the apparent activation energies are estimated to be about 674–705 kJ/mol in the α+β region and 308–335 kJ/mol in the β region, respectively. When deformed in the α+β region, the globularization process of the α colony structure occurs, and α dynamic recrystallized microstructures are observed to show bimodal. Dynamic recrystallization can take place in the β region irrespective of starting deformed structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Filip, K. Kubiak, W. Ziaja, and J. Sieniawski, The effect of microstructure on the mechanical properties of two-phase titanium alloys, J. Mater. Process. Technol., 133(2003), p.84.

    Article  Google Scholar 

  2. M. Jackson and K. Dring, Materials perspective: A review of advances in processing and metallurgy of titanium alloys, Mater. Sci. Technol., 22(2006), p.881.

    Article  Google Scholar 

  3. Y.B. Chun and S.K. Hwang, Static recrystallization of warm-rolled pure Ti influenced by microstructural inhomogeneity, Acta Mater., 56(2008), p.369.

    Article  Google Scholar 

  4. R. Ding, Z.X. Guo, and A. Wilson, Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing, Mater. Sci. Eng. A, 327(2002), p.233.

    Article  Google Scholar 

  5. S.L. Semiatin and T.R. Bieler, The effect of alpha platelet thickness on plastic flow during hot working of TI-6Al-4V with a transformed microstructure, Acta Mater., 49(2001), p.3565.

    Article  Google Scholar 

  6. R.C. Picu and A. Majorell, Mechanical behavior of Ti-6Al-4V at high and moderate temperatures—Part II. Constitutive modeling, Mater. Sci. Eng. A, 326(2002), p.306.

    Article  Google Scholar 

  7. P. Wanjara, M. Jahazi, H. Monajati, and S. Yue, Influence of thermomechanical processing on microstructural evolution in near-α alloy IMI834, Mater. Sci. Eng. A, 416(2006), p.300.

    Article  Google Scholar 

  8. J.T. Liu, G.Q. Liu, and B.F. Hu, Hot deformation behavior of FGH96 superalloys, J. Univ. Sci. Technol. Beijing, 13(2006), p.319.

    Article  Google Scholar 

  9. P.L. Martin, Effects of hot working on the microstructure of Ti-base alloys, Mater. Sci. Eng. A, 243(1998), p.25.

    Article  Google Scholar 

  10. I. Weiss, F.H. Froes, D. Eylon, and G.E. Welsch, Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing, Metall. Trans. A, 17(1986), p.1935.

    Article  Google Scholar 

  11. S.L. Semiatin, V. Seetharaman, and I. Weiss, Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure, Mater. Sci. Eng. A, 263(1999), p.257.

    Article  Google Scholar 

  12. M.F. Savage, J. Tatalovich, M. Zupan, et al., Deformation mechanisms and microtensile behavior of single colony Ti-6242Si, Mater. Sci. Eng. A, 319–321(2001), p.398.

    Article  Google Scholar 

  13. M.Q. Li, X.M. Liu, and A.M. Xiong, Prediction of the mechanical properties of forged TC11 titanium alloy by ANN, J. Mater. Process. Technol., 121(2002), p.1.

    Article  Google Scholar 

  14. A.B. Li, L.J. Huang, Q.Y. Meng, et al., Hot working of Ti-6Al-3Mo-2Zr-0.3Si alloy with lamellar α+β starting structure using processing map, Mater. Des., 30(2009), p.1625.

    Article  Google Scholar 

  15. B. Poorganji, M. Yamaguchi, Y. Itsumi, et al., Microstructure evolution during deformation of a near-α titanium alloy with different initial structures in the two-phase region, Scripta Mater., 61(2009), p.419.

    Article  Google Scholar 

  16. N.S. Reddy, Y.H. Lee, C.H. Park, and C.S. Lee, Prediction of flow stress in Ti-6Al-4V alloy with an equiaxed α+β microstructure by artificial neural networks, Mater. Sci. Eng. A, 492(2008), p.276.

    Article  Google Scholar 

  17. S. Bruschi, S. Poggio, F. Quadrini, and M.E. Tata, Workability of Ti-6Al-4V alloy at high temperatures and strain rates, Mater. Lett., 58(2004), p.3622.

    Article  Google Scholar 

  18. I. Weiss and S.L. Semiatin, Thermomechanical processing of alpha titanium alloys—An overview, Mater. Sci. Eng. A, 263(1999), p.243.

    Article  Google Scholar 

  19. T. Sheppard and J. Norley, Deformation characteristics of Ti-6Al-4V, Mater. Sci. Technol., 4(1988), p.903.

    Google Scholar 

  20. L. Briottet, J.J. Jonas, and F. Montheillet, A mechanical interpretation of the activation energy of high temperature deformation in two phase materials, Acta Mater., 44(1996), p.1665.

    Article  Google Scholar 

  21. S.L. Semiatin, F. Montheillet, G. Shen, et al., Self-consistent modeling of the flow behavior of wrought alpha/beta titanium alloys under isothermal and nonisothermal hot-working conditions, Metall. Mater. Trans. A, 33(2002), p.2719.

    Article  Google Scholar 

  22. R. Mythili, S. Saroja, and M. Vijayalakshmi, Study of mechanical behavior and deformation mechanism in an α-β Ti-4.4Ta-1.9Nb alloy, Mater. Sci. Eng. A, 454–455(2007), p.43.

    Article  Google Scholar 

  23. S.I. Oh, S.L. Semiatin, and J.J. Jonas, An analysis of the isothermal hot compression test, Metall. Trans. A, 23(1992), p.963.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-zhou Zhang.

Additional information

This work was financially supported by the National Natural Science Foundation of China (No.50901063), the Program of Science and Technology of Shandong Province, China (No.2007DS04014, 2007BS05006), and the Open Research Fund from the State Key Laboratory of Rolling and Automation of Northeastern University, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Gf., Zhang, Sz., Chen, Lq. et al. Deformation behavior and microstructural evolution during hot compression of an α+β Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy. Int J Miner Metall Mater 18, 344–351 (2011). https://doi.org/10.1007/s12613-011-0445-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-011-0445-6

Keywords

Navigation