Skip to main content

Advertisement

Log in

Cryoablation as a Replacement for Surgical Resection in Early Stage Breast Cancer

  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

With improvements in technology, freezing malignant tissue (cryoablation) as an alternative to surgery has been used to treat cancers of the skin, prostate, liver, lung, and bone. There is significant interest in cryoablation of breast cancer. Potential advantages over lumpectomy include the minimally invasive nature of the treatment, improved cosmetic results, patient comfort, decreased costs, and the possible immune response to the ablated tissue. Several pre-clinical and clinical studies have demonstrated both the feasibility of breast cancer cryoablation and the generation of an anti-tumor immune response, and clinical experience with cryoablation of benign breast tumors is growing. The ongoing American College of Surgeons Oncology Group Trial Z1072, a phase II trial examining the success of breast cancer cryoablation, is an important first step in possibly replacing lumpectomy with cryoablation for a subset of breast cancer patients. This article reviews the breast cryoablation literature to date and discusses the directions the field needs to move in to realize that goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Paper of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Korpan NN. A history of cryosurgery: its development and future. JACS. 2007;204(2):314–24.

    Google Scholar 

  2. Bird HM, James Arnott MD. (Aberdeen) 1797–1883. A pioneer in refrigeration analgesia. Anaesthesia. 1949;4:10–7.

    Article  Google Scholar 

  3. Smith DJ, Fahssi WM, Swanlund DJ, et al. A parametric study of freezing injury in AT-1 rat prostate tumor cells. Cryobiology. 1999;39:13–28.

    Article  PubMed  CAS  Google Scholar 

  4. Rui J, Tatsutani KN, Dahiya R, et al. Effect of thermal variables on human breast cancer in cryosurgery. Breast Cancer Res Treat. 1999;53(2):185–92.

    Article  PubMed  CAS  Google Scholar 

  5. Rewcastle JC, Sandison GA, Muldrew K, et al. A model for the time dependent three-dimensional thermal distribution within iceballs surrounding multiple cryoprobes. Med Phys. 2001;28(6):1125–37.

    Article  PubMed  CAS  Google Scholar 

  6. Bischof JC, Smith D, Pazhayannur PV, et al. Cryosurgery of dunning AT-1 rat prostate tumor: thermal, biophysical, and viability response at the cellular and tissue level. Cryobiology. 1997;34(1):42–69.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang A, Xu LX, Sandison GA, et al. A microscale model for prediction of breast cancer cell damage during cryosurgery. Cryobiology. 2003;47:143–54.

    Article  PubMed  CAS  Google Scholar 

  8. Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology. 1998;37(3):171–86.

    Article  PubMed  CAS  Google Scholar 

  9. Baust JM, Van B, Baust JG. Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim. 2000;36(4):262–70.

    Article  PubMed  CAS  Google Scholar 

  10. Sperber F, Blank A, Mester U, et al. Diagnosis and treatment of breast fibroadenomas by ultrasound-guided vacuum-assisted biopsy. Arch Surg. 2003;138:796–800.

    Article  PubMed  Google Scholar 

  11. Houssami N, Cheung MN, Dixon JM. Fibroadenoma of the breast. Med J Aust. 2001;174(4):185–8.

    PubMed  CAS  Google Scholar 

  12. Kaufman CS, Bachman B, Littrup PJ, et al. Cryoablation treatment of benign breast lesions with 12-month follow-up. Am J Surg. 2004;188:340–8.

    Article  PubMed  Google Scholar 

  13. Kaufman CS, Bachman B, Littrup PJ, et al. Office-based ultrasound-guided cryoablation of breast fibroadenomas. Am J Surg. 2002;184:394–400.

    Article  PubMed  Google Scholar 

  14. Kaufman CS, Littrup PJ, Freman-Gibb LA, et al. Office-based cryoablation of breast fibroadenomas: 12-month follow-up. J Am Coll Surg. 2004;198:914–23.

    Article  PubMed  Google Scholar 

  15. Littrup PJ, Freeman-Gibb LA, Andea A, et al. Cryotherapy for breast fibroadenomas. Radiology. 2005;234(1):63–72.

    Article  PubMed  Google Scholar 

  16. Edwards MJ, Broadwater R, Tafra L, et al. Progressive adoption of cryoablative therapy for breast fibroadenoma in community practice. Am J Surg. 2004;188:221–4.

    Article  PubMed  Google Scholar 

  17. LePivert P. Basic considerations of the cryolesion. In: Ablin RJ, editor. Handbook of cryosurgery. New York, NY: Marcel Dekker, Inc.; 1980. p. 15–68.

    Google Scholar 

  18. Tanaka S. Cryosurgical treatment of advanced breast cancer. Skin Cancer. 1995;10:9–18.

    Google Scholar 

  19. Suzuki Y. Cryosurgical treatment of advanced breast cancer and cryoimmunological responses. Skin Cancer. 1995;10:19–26.

    Google Scholar 

  20. Rand RW, Rand RP, Eggerding FA, et al. Cryolumpectomy for breast cancer: an experimental study. Cryobiology. 1985;22(4):307–18.

    Article  PubMed  CAS  Google Scholar 

  21. Rand RW, Rand RP, Eggerding F, et al. Cryolumpectomy for carcinoma of the breast. Surg Gynecol Obstet. 1987;165(5):392–6.

    PubMed  CAS  Google Scholar 

  22. Tafra L, Smith SJ, Woodward JE, et al. Pilot trial of cryoprobe-assisted breast-conserving surgery for small ultrasound-visible cancers. Ann Surg Oncol. 2003;10(9):1018–24.

    Article  PubMed  Google Scholar 

  23. Tafra L, Fine R, Whitworth P, et al. Prospective randomized study comparing cryo-assisted and needle-wire localization of ultrasound-visible breast tumors. Am J Surg. 2006;192:462–70.

    Article  PubMed  Google Scholar 

  24. Staren ED, Sabel MS, Gianakakis LM, et al. Cryosurgery of breast cancer. Arch Surg. 1997;132(1):28–33.

    PubMed  CAS  Google Scholar 

  25. Pfleiderer SO, Freesmeyer MG, Marx C, et al. Cryotherapy of breast cancer under ultrasound guidance: initial results and limitations. Eur Radiol. 2002;12(12):3009–14.

    PubMed  Google Scholar 

  26. •• Pfleiderer SOR, Marx C, Camara O, et al. Ultrasound-guided, percutaneous cryotherapy of small (<15 mm) breast cancers. Investig Radiol. 2005;40(7):472–7. A clinical trial demonstrating the strong potential of breast cryoablation when utlilized in an appropriately selected subset of patients.

    Article  Google Scholar 

  27. Niu L, Xu K, He W, et al. Efficacy of percutaneous cryoablation for small solitary breast cancer in term pathologic evidence (abstract). Technol Cancer Res Treat. 2007;6:460–1.

    Google Scholar 

  28. •• Sabel MS, Kaufman CS, Whitworth P, et al. Cryoablation of early-stage breast cancer: work-in-progress report of a multi-institutional trial. Ann Surg Oncol. 2004;11(5):542–9. A multicenter trial demonstrating the potential and limitations of breast cryoablation.

    Article  PubMed  Google Scholar 

  29. Roubidoux MA, Sabel MS, Bailey JE, et al. Small (< 2.0-cm) breast cancers: mammographic and US findings at US-guided cryoablation–initial experience. Radiology. 2004;233(3):857–67.

    Article  PubMed  Google Scholar 

  30. Pusztaszeri M, Vlastos G, Kinkel K, et al. Histopathological study of breast cancer and normal breast tissue after magnetic resonance-guided cryotherapy ablation. Cryobiology. 2007;55:44–51.

    Article  PubMed  Google Scholar 

  31. Morin J, Traore' A, Dionne G, et al. Magnetic resonance-guided percutaneous cryosurgery of breast carcinoma: technique and early clinical results. Can J Surg. 2007;47(5):347–51.

    Google Scholar 

  32. Burak WE, Angese MA, Povoski SP, et al. Radiofrequency ablation of invasive breast carcinoma followed by delated surgical excision. Cancer. 2003;98:1369–76.

    Article  PubMed  Google Scholar 

  33. Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology. 2009;58(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  34. Ablin RJ, Soanes WA, Conder MJ. Prospects for cryo-immunotherapy in cases of metastasizing carcinoma of the prostate. Cryobiology. 1971;8:271–9.

    Article  Google Scholar 

  35. Ablin RJ, Soanes WA, Gonder MJ. Elution of in vivo bound antiprostatic epithelial antibodies following multiple cryotherapy of carcinoma of prostate. Urology. 1973;11(3):276–9.

    Article  Google Scholar 

  36. Horan AH. Sequential cryotherapy for prostatic carcinoma: does it palliate the bone pain? Conn Med. 1975;39(2):81–3.

    PubMed  CAS  Google Scholar 

  37. Ulschmid G, Kolb E, Largiader F. Cryosurgery of pulmonary metastases. Cryobiology. 1979;16:171–8.

    Article  Google Scholar 

  38. Tanaka S. Immunological aspects of cryosurgery in general surgery. Cryobiology. 1982;19:247–62.

    Article  PubMed  CAS  Google Scholar 

  39. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045.

    Article  PubMed  CAS  Google Scholar 

  40. Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin Immunol. 1996;8:271–80.

    Article  PubMed  CAS  Google Scholar 

  41. Skoberne M, Beignon AS, Bhardwaj N. Danger signals: a time and space continuum. Trends Mol Med. 2004;10:251–7.

    Article  PubMed  CAS  Google Scholar 

  42. Demaria S, Bhardwaj N, McBride WH, et al. Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys. 2005;63(3):655–66.

    Article  PubMed  Google Scholar 

  43. Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol. 2001;167:2887–94.

    PubMed  CAS  Google Scholar 

  44. Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195:99–111.

    Article  PubMed  CAS  Google Scholar 

  45. Okamura Y, Watari M, Jerud ES, et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem. 2002;276:10229–33.

    Article  Google Scholar 

  46. Sauter B, Albert ML, Francisco L, et al. Consequences of cell death. Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med. 2000;191:423–34.

    Article  PubMed  CAS  Google Scholar 

  47. Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med. 1999;5:1249–55.

    Article  PubMed  CAS  Google Scholar 

  48. Peng Y, Martin DA, Kenkel J, et al. Innate and adaptive immune response to apoptotic cells. J Autoimmun. 2007;29:303–9.

    Article  PubMed  CAS  Google Scholar 

  49. Viorritto ICB, Nikolov NP, Siegel RM. Autoimmunity versus tolerance: can dying cells tip the balance? Clin Immunol. 2007;122:125–34.

    Article  PubMed  CAS  Google Scholar 

  50. Scheinecker C, McHugh R, Shevach EM, et al. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J Exp Med. 2002;196:1079–90.

    Article  PubMed  CAS  Google Scholar 

  51. Huang FP, Platt N, Wykes M, et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T-cell areas of mesenteric lymph nodes. J Exp Med. 2000;191:435–44.

    Article  PubMed  CAS  Google Scholar 

  52. Savill J, Dransfield I, Gregory C, et al. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol. 2002;2:965–75.

    Article  PubMed  CAS  Google Scholar 

  53. Fadok VA, Bratton DL, Konowal A, et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2 and PAF. J Clin Invest. 1998;101:890–8.

    Article  PubMed  CAS  Google Scholar 

  54. Stuart LM, Lucas M, Simpson C, et al. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J Immunol. 2002;168:1627–35.

    PubMed  CAS  Google Scholar 

  55. Liu K, Iyoda T, Saternus M, et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med. 2002;196:1091–7.

    Article  PubMed  CAS  Google Scholar 

  56. Blackwood CE, Cooper IS. Response of experimental tumor systems to cryosurgery. Cryobiology. 1972;9:508–15.

    Article  PubMed  CAS  Google Scholar 

  57. Bagley DH, Faraci RP, Marrone JC, et al. Lymphocyte mediated cytotoxicity after cryosurgery of a murine sarcoma. J Surg Res. 1974;17:404–6.

    Article  PubMed  CAS  Google Scholar 

  58. Gazzaniga S, Bravo A, Goldszmid SR, et al. Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice. J Invest Dermatol. 2001;116(5):664–71.

    Article  PubMed  CAS  Google Scholar 

  59. den Brok MHMGM, Sutmuller RPM, Nierkens S, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induced anti-tumor immunity. Br J Cancer. 2006;95:896–905.

    Article  Google Scholar 

  60. Urano M, Tanaka C, Sugiyama T, et al. Antitumor effects of residual tumor after cryoablation: the combined effect of residual tumor and a protein-bound polysaccharaide on multiple liver metastases in a murine model. Cryobiology. 2003;46:238–45.

    Article  PubMed  CAS  Google Scholar 

  61. Neel HBd, Ketcham AS, Hammond WG. Experimental evaluation of in situ oncocide for primary tumor therapy: comparison of tumor-specific immunity after complete excision, cryonecrosis and ligation. Laryngoscope. 1973;83(3):376–87.

    Article  PubMed  Google Scholar 

  62. Misao A, Sakata K, Saji S, et al. Late appearance of resistance to tumor rechallenge following cryosurgery: a study in an experimental mammary tumor of the rat. Cryobiology. 1981;18:386–9.

    Article  PubMed  CAS  Google Scholar 

  63. Miha K, Saji S, Morita T, et al. Immunological response of regional lymph nodes after tumor cryosurgery: experimental study in rats. Cryobiology. 1986;23:290–5.

    Article  Google Scholar 

  64. Sabel MS, Nehs MA, Su G, et al. Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat. 2005;90(1):97–104.

    Article  PubMed  CAS  Google Scholar 

  65. Sabel MS, Arora A, Su G, et al. Adoptive immunotherapy of breast cancer with lymph node cells primed by cryoablation of the primary tumor. Cryobiology. 2006;53(3):360–6.

    Article  PubMed  CAS  Google Scholar 

  66. Muller LC, Micksche M, Yamagata S, et al. Therapeutic effect of cryosurgery of murine osteosarcoma- Influence on disease outcome and immune function. Cryobiology. 1985;22:77–85.

    Article  PubMed  CAS  Google Scholar 

  67. Javadpour N, Bagley DH, Zbar B. Failure of cryosurgical treatment of experimental intradermal tumors to eradicate microscopic lymph node metastases in guinea pigs. J Natl Cancer Inst. 1979;62(6):1479–81.

    PubMed  CAS  Google Scholar 

  68. Hayakawa K, Yamashita T, Suzuki K, et al. Comparative immunological studies in rats following cryosurgery and surgical excision of 3-methylcholantrene-induced primary autochthousous tumors. Gann. 1982;73(3):462–9.

    PubMed  CAS  Google Scholar 

  69. Yamashita T, Hayakawa K, Hosokawa M, et al. Enhanced tumor metastases in rats following cryosurgery of primary tumor. Gann. 1982;73:222.

    PubMed  CAS  Google Scholar 

  70. Shibata T, Suzuki K, Yamashita T, et al. Immunological analysis of enhanced spontaneous metastasis in WKA rats following cryosurgery. Anticancer Res. 1998;18(4A):2483–6.

    PubMed  CAS  Google Scholar 

  71. Shibata T, Yamashita T, Suzuki K, et al. Enhancement of experimental pulmonary metastasis and inhibition of subcutaneously transplanted tumor growth following cryosurgery. Anticancer Res. 1998;18(6A):4443–8.

    PubMed  CAS  Google Scholar 

  72. Hanawa S. An experimental study on the induction of anti-tumor immunological activity after cryosurgery for liver carcinoma, and the effect of concomitant immunotherapy with OK432. J Japan Surg Soc. 1993;94:57.

    CAS  Google Scholar 

  73. Miya K, Saji S, Morita T, et al. Experimental study on mechanism of absorption of cryonecrotized tumor antigens. Cryobiology. 1987;24:135–9.

    Article  PubMed  CAS  Google Scholar 

  74. Shibata T, Yamashita T, Suzuki K, et al. Enhancement of experimental pulmonary metastaseis and inhibition of subcutaneously transplanted tumor growth following cryosurgery. Anticancer Res. 1998;18:4443–8.

    PubMed  CAS  Google Scholar 

  75. Wing MG, Rogers K, Jacob G, et al. Characterisation of suppressor cells generated following cryosurgery of an HSV-2-induced fibrosarcoma. Cancer Immunol Immunother. 1988;26:169–75.

    PubMed  CAS  Google Scholar 

  76. •• Sabel MS, Su G, Griffith KA, et al. Rate of freeze alters the immunologic response after cryoablation of breast cancer. Annals of Surgical Oncology 2009; 17(4):1187–93. This is a pre-clinical study that not only documents the anti-tumor immune response generated by in situ cryoablation, but also shows how this can be altered by changing the cryoablation technique, and hence the method of cell death.

    Article  PubMed  Google Scholar 

  77. Redondo P, del Olmo J, Lopez-Diaz de Cerio A, et al. Imiquimod enhances the systemic immunity attained by local cryosurgery destruction of melanoma lesions. J Investig Dermatol. 2007;127:1673–80.

    PubMed  CAS  Google Scholar 

  78. den Brok MHMGM, Sutmuller RPM, Nierkens S, et al. Synergy between in situ cryosurgery and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine. Cancer Res. 2006;66(14):7285–92.

    Article  Google Scholar 

  79. Machlenkin A, Goldberger O, Tirosh B, et al. Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity. Clin Cancer Res. 2005;11(13):4954–61.

    Article  Google Scholar 

  80. Udagawa M, Kudo-Saito C, Hasegawa G, et al. Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and bacillus calmette-guerin cell wall skeleton stimulation. Clin Cancer Res. 2006;12(24):7465–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Michael S. Sabel reports no potential conflict of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sabel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabel, M.S. Cryoablation as a Replacement for Surgical Resection in Early Stage Breast Cancer. Curr Breast Cancer Rep 3, 109–116 (2011). https://doi.org/10.1007/s12609-011-0044-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-011-0044-6

Keywords

Navigation