Skip to main content
Log in

Assessing the Potential Biological Activities of Postbiotics Derived from Saccharomyces cerevisiae: An In Vitro Study

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

A new biotherapeutic strategy involves the use of microbial bioactive substances (postbiotics) that exhibit optimum compatibility and intimate contact with the immune system of the host. This study was aimed at investigating the potential biological activities of postbiotics derived from Saccharomyces cerevisiae (PTCC 5269) (PSC) under in vitro circumstances. Based on the outcomes, the synthesized PSC possessing a high level of phenolic (102.46 ± 0.25 mg GAE/g) and flavonoid (19.87 ± 75.32 mg QE/g) content demonstrated significant radical scavenging activity (87.34 ± 0.56%); antibacterial action towards Listeria monocytogenes, Streptococcus mutans, Salmonella typhi, and Escherichia coli (in order of effectiveness) in both in vitro and food models (whole milk and ground meat); probiotics' growth-promoting activity in the fermentation medium; α-glucosidase enzyme-inhibiting and cholesterol-lowering properties in a concentration- and pH-dependent manner; reduction in the cell viability (with the significant IC50 values of 34.27 and 23.58 μg/mL after 24 and 48 h, respectively); suppressed the initial (G0/G1) phase of the cell's division; induced apoptosis; and increased the expression of PTEN gene, while the IkB, RelA, and Bcl-XL genes indicated diminished expression in treated SW480 cancer cells. These multiple health-promoting functions of PSC can be extended to medical, biomedical, and food scopes, as novel biotherapeutic approaches, in order to design efficient and optimized functional food formulations or/and supplementary medications to use as adjuvant agents for preventing or/and treating chronic/acute disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

Abbreviations

PSC:

Postbiotics derived from Saccharomyces cerevisiae

QS:

Quorum sensing

YPD:

Yeast peptone dextrose

YMB:

Yeast malt broth

ABTS:

2,2′-Azino-bis [3-ethylbenzothiazoline-6-sulfonic acid] diammonium salt

MHA:

Mueller Hinton agar

MHB:

Mueller Hinton broth

SDA:

Sabouraud dextrose agar

MSA:

Mannitol salt agar

EMB:

Eosin methylene blue

PCA:

Plate count agar

BHI:

Brain heart infusion

LB:

Luria Bertani

CT-SMAC:

Cefixime tellurite sorbitol MacConkey

CFS:

Cell-free supernatant

GAE:

Gallic acid equivalent

QE:

Quercetin equivalent

DDA:

Disc diffusion agar

MIC:

Minimum inhibitory concentration

MBC:

Minimum bactericidal concentration

WDA:

Well diffusion agar

MEC:

Minimal effective concentration

pNPG:

4-Nitrophenly α-D-glucopyranoside

5-FU:

5–Fluorouracil

PBS:

Phosphate-buffered saline

PI:

Propidium iodide

ANOVA:

One-way analysis of variance

ROS:

Reactive oxygen species

AFB1 :

Aflatoxin B1

CDC:

Centers for Disease Control and Prevention

References

  1. Rajakovich LJ, Balskus EP (2019) Metabolic functions of the human gut microbiota: the role of metalloenzymes. Nat Prod Rep 36(4):593–625

    Article  CAS  PubMed  Google Scholar 

  2. Bhardwaj S et al (2021) Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: a critical review. Iran J Basic Med Sci 24(6):699

    PubMed  PubMed Central  Google Scholar 

  3. Sabahi S et al (2022) Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nut 1–28

  4. Abbasi A et al (2023) A critical review on the gluten-induced enteropathy/celiac disease: gluten-targeted dietary and non-dietary therapeutic approaches. Food Rev Intern 1–41

  5. Ozma MA, Abbasi A, Sabahi S (2022) Characterization of postbiotics derived from Lactobacillus paracasei ATCC 55544 and its application in Malva sylvestris seed mucilage edible coating to the improvement of the microbiological, and sensory properties of lamb meat during storage. Biointerface Res Appl Chem 13(3)

  6. Abbasi A, Saadat TR, Saadat YR (2022) Microbial exopolysaccharides–β-glucans–as promising postbiotic candidates in vaccine adjuvants. Intern J Biol Macromole

  7. Abbasi A, Sheykhsaran E, Kafil HS (2021) Postbiotics: science, technology and applications. Bentham Sci Pub

  8. Moradi M et al (2020) Postbiotics produced by lactic acid bacteria: the next frontier in food safety. Compr Rev Food Sci Food Saf 19(6):3390–3415

    Article  PubMed  Google Scholar 

  9. Evers MS et al (2023) Thiamine and biotin: relevance in the production of volatile and non-volatile compounds during Saccharomyces cerevisiae alcoholic fermentation in synthetic grape must. Foods 12. https://doi.org/10.3390/foods12050972

  10. Rahbar Saadat Y et al (2020) Modulatory role of exopolysaccharides of Kluyveromyces marxianus and Pichia kudriavzevii as probiotic yeasts from dairy products in human colon cancer cells. J Funct Foods 64:103675

    Article  CAS  Google Scholar 

  11. Abeysekera W, Premakumara G, Ratnasooriya W (2013) In vitro antioxidant properties of leaf and bark extracts of ceylon cinnamon (Cinnamomum zeylanicum Blume)

  12. Nantitanon W, Chowwanapoonpohn S, Okonogi S (2007) Antioxidant and antimicrobial activities of Hyptis suaveolens essential oil. Sci Pharm 75(1):35–54

    Article  CAS  Google Scholar 

  13. Sabahi S, Abbasi A, Mortazavi SA (2022) Characterization of cinnamon essential oil and its application in Malva sylvestris seed mucilage edible coating to the enhancement of the microbiological, physicochemical and sensory properties of lamb meat during storage. J Appl Microbiol 133(2):488–502

    Article  CAS  PubMed  Google Scholar 

  14. Hartmann HA, Wilke T, Erdmann R (2011) Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food. Int J Food Microbiol 146(2):192–199

    Article  CAS  PubMed  Google Scholar 

  15. Wang K et al (2014) Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int J Biol Macromol 63:133–139

    Article  CAS  PubMed  Google Scholar 

  16. Kazeem M, Adamson J, Ogunwande I (2013) Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed Res Intern

  17. Soh H-S, Kim C-S, Lee S-P (2003) A new in vitro assay of cholesterol adsorption by food and microbial polysaccharides. J Med Food 6(3):225–230

    Article  CAS  PubMed  Google Scholar 

  18. Faghfoori MH et al (2020) Anticancer effect of X-Ray triggered methotrexate conjugated albumin coated bismuth sulfide nanoparticles on SW480 colon cancer cell line. Int J Pharm 582:119320

    Article  CAS  PubMed  Google Scholar 

  19. Pang H et al (2021) Exosomes derived from colon cancer cells and plasma of colon cancer patients promote migration of SW480 cells through Akt/mTOR pathway. Pathol Res Prac 222

  20. Abbasi A et al (2023) Antigenotoxicity and cytotoxic potentials of cell-free supernatants derived from Saccharomyces cerevisiae var. boulardii on HT-29 human colon cancer cell lines. Probiot Antimicro Prot 1–13

  21. Vahed SZ et al (2017) Leuconostoc mesenteroides-derived anticancer pharmaceuticals hinder inflammation and cell survival in colon cancer cells by modulating NF-κB/AKT/PTEN/MAPK pathways. Biomed Pharmacother 94:1094–1100

    Article  Google Scholar 

  22. Nozari S et al (2019) Potential anticancer effects of cell wall protein fractions from Lactobacillus paracasei on human intestinal Caco-2 cell line. Lett Appl Microbiol 69(3):148–154

    CAS  PubMed  Google Scholar 

  23. Amirsaadat S et al (2017) Silibinin-loaded magnetic nanoparticles inhibit hTERT gene expression and proliferation of lung cancer cells. Artif Cells Nanomed Biotechnol 45(8):1649–1656

    Article  CAS  PubMed  Google Scholar 

  24. Sabahi S et al (2022) Production of functional ice cream fortified by immunoglobulin Y against Escherichia coli O157: H7 and Helicobacter pylori

  25. Ozma MA et al (2022) Postbiotics as the key mediators of the gut microbiota-host interactions. Infez Med 30(2):180

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang R et al (2022) Solvents effect on phenolics, iridoids, antioxidant activity, antibacterial activity, and pancreatic lipase inhibition activity of noni (Morinda citrifolia L.) fruit extract. Food Chem 377:131989

  27. Molska M et al (2022) Analysis of phenolic compounds in buckwheat (Fagopyrum esculentum Moench) sprouts modified with probiotic yeast. Molecules 27(22):7773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Z et al (2022) Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: bioactive phenolics, antioxidant activities and flavor volatiles. Food Chem 373:131455

    Article  CAS  PubMed  Google Scholar 

  29. Doi K, Uetsuka K (2011) Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int J Mol Sci 12(8):5213–5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Faustino M et al (2019) Agro-food byproducts as a new source of natural food additives. Molecules 24(6):1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amaretti A et al (2013) Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97:809–817

    Article  CAS  PubMed  Google Scholar 

  32. Guerrero-Encinas I et al (2021) Protective effect of Lacticaseibacillus casei CRL 431 postbiotics on mitochondrial function and oxidative status in rats with aflatoxin B 1–induced oxidative stress. Probiot Antimicro Prot 1–11

  33. Wang Y et al (2017) Antioxidant properties of probiotic bacteria. Nutrients 9(5):521

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aguilar-Toalá J et al (2019) Modulatory effect of the intracellular content of Lactobacillus casei CRL 431 against the aflatoxin B 1-induced oxidative stress in rats. Probiot Antimicro Prot 11:470–477

    Article  Google Scholar 

  35. Li H et al (2021) Study on the nutritional characteristics and antioxidant activity of dealcoholized sequentially fermented apple juice with Saccharomyces cerevisiae and Lactobacillus plantarum fermentation. Food Chem 363:130351

    Article  CAS  PubMed  Google Scholar 

  36. Chen Q et al (2021) Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation. J Cereal Sci 97:103157

    Article  CAS  Google Scholar 

  37. Yu Y-H et al (2020) Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa. Microb Cell Fact 19:1–10

    Article  Google Scholar 

  38. Behbahani BA et al (2018) Oliveria decumbens essential oil: chemical compositions and antimicrobial activity against the growth of some clinical and standard strains causing infection. Microb Pathog 114:449–452

    Article  Google Scholar 

  39. Falah F et al (2021) In vitro screening of phytochemicals, antioxidant, antimicrobial, and cytotoxic activity of Echinops setifer extract. Biocatal Agric Biotechnol 35:102102

    Article  CAS  Google Scholar 

  40. Mehrnia MA et al (2021) Sclerorhachis platyrachis essential oil: antioxidant power, total phenolic and flavonoid content and its antimicrobial activity on some Gram-positive and Gram-negative bacteria “in vitro.” Journal of food science and technology (Iran) 18(112):189–198

    Article  Google Scholar 

  41. Zanganeh H et al (2021) Evaluation of the chemical and antibacterial properties of Citrus paradise essential oil and its application in Lallemantia iberica seed mucilage edible coating to improve the physicochemical, microbiological and sensory properties of lamb during refrigerated storage. J Food Meas Charact 15(6):5556–5571

    Article  Google Scholar 

  42. Unlu M et al (2010) Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem Toxicol 48(11):3274–3280

    Article  CAS  PubMed  Google Scholar 

  43. Ribeiro-Santos R et al (2017) Biological activities and major components determination in essential oils intended for a biodegradable food packaging. Ind Crops Prod 97:201–210

    Article  CAS  Google Scholar 

  44. Pereira RP et al (2021) In vitro assessment of probiotic potential of Saccharomyces cerevisiae DABRP5 isolated from Bollo batter, a traditional Goan fermented food. Probiot Antimicro Prot 13:796–808

    Article  CAS  Google Scholar 

  45. Abdollahzadeh E et al (2016) Prevalence and molecular characterization of Listeria spp. and Listeria monocytogenes isolated from fish, shrimp, and cooked ready-to-eat (RTE) aquatic products in Iran. LWT 73:205–21

  46. Abdollahzadeh E et al (2016) Antimicrobial resistance of Listeria monocytogenes isolated from seafood and humans in Iran. Microb Pathog 100:70–74

    Article  CAS  PubMed  Google Scholar 

  47. Kim YJ et al (2021) Anti-biofilm effect of the cell-free supernatant of probiotic Saccharomyces cerevisiae against Listeria monocytogenes. Food Control 121:107667

    Article  CAS  Google Scholar 

  48. Li R et al (2021) Listeria decontamination of chicken meat with beer brewed with bacteriocin producing Saccharomyces boulardii. LWT 152:112323

    Article  CAS  Google Scholar 

  49. Koo OK, Kim SM, Kang SH (2015) Antimicrobial potential of Leuconostoc species against E. coli O157: H7 in ground meat. J Korean Soc Appl Biol Chem 58(6):831–838

  50. Hamad G, Botros W, Hafez E (2017) Combination of probiotic filtrates as antibacterial agent against selected some pathogenic bacteria in milk and cheese. Int J Dairy Sci 12:368–376

    Article  CAS  Google Scholar 

  51. Gálvez A et al (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120(1–2):51–70

    Article  PubMed  Google Scholar 

  52. Sasikumar K et al (2017) An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Biores Technol 241:1152–1156

    Article  CAS  Google Scholar 

  53. Bhat B, Bajaj BK (2018) Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from kalarei. Biores Technol 254:264–267

    Article  CAS  Google Scholar 

  54. Shamekhi S et al (2020) Apoptotic effect of Saccharomyces cerevisiae on human colon cancer SW480 cells by regulation of Akt/NF-ĸB signaling pathway. Probiot Antimicro Prot 12:311–319

    Article  Google Scholar 

  55. Sima P, Richter J, Vetvicka V (2019) Glucans as new anticancer agents. Anticancer Res 39(7):3373–3378

    Article  CAS  PubMed  Google Scholar 

  56. Fortin O et al (2018) Cancer chemopreventive, antiproliferative, and superoxide anion scavenging properties of Kluyveromyces marxianus and Saccharomyces cerevisiae var. boulardii cell wall components. Nutr Cancer 70(1):83–96

  57. Nami Y et al (2015) The prophylactic effect of probiotic Enterococcus lactis IW5 against different human cancer cells. Front Microbiol 6:1317

    Article  PubMed  PubMed Central  Google Scholar 

  58. Plewka D et al (2018) Nuclear factor-kappa B as potential therapeutic target in human colon cancer. J Cancer Res Ther 14(3):516–520

    Article  CAS  PubMed  Google Scholar 

  59. Koerber MI et al (2016) NFκB-associated pathways in progression of chemoresistance to 5-fluorouracil in an in vitro model of colonic carcinoma. Anticancer Res 36(4):1631–1639

    CAS  Google Scholar 

  60. Davoudi Z et al (2014) Molecular target therapy of AKT and NF-kB signaling pathways and multidrug resistance by specific cell penetrating inhibitor peptides in HL-60 cells. Asian Pac J Cancer Prev 15(10):4353–4358

    Article  PubMed  Google Scholar 

  61. Brown K et al (1993) Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc Natl Acad Sci 90(6):2532–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karin M et al (2002) NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310

    Article  CAS  PubMed  Google Scholar 

  63. Altonsy MO, Andrews SC, Tuohy KM (2010) Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: mediation by the mitochondrial pathway. Int J Food Microbiol 137(2–3):190–203

    Article  PubMed  Google Scholar 

  64. Hu T et al (2016) Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol 22(30):6876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the Toxicology Research Center, Medical Basic Sciences Research Institute of Ahvaz Jundishapur University of Medical Sciences for the financial support of this study.

Funding

This research was funded by the Toxicology Research Center, Medical Basic Sciences Research Institute of Ahvaz Jundishapur University of Medical Sciences, grant number TRC-0059.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to the conception and design of the study and revised the manuscript. AA and SA conducted all the experiments and statistical analysis. AA, SS, and AYA drafted the first version of the manuscript. HH and SS reviewed the draft manuscript, and all the authors revised the final version of the manuscript.

Corresponding author

Correspondence to Sahar Sabahi.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the ethics committee of the research and technology deputy of Ahvaz Jundishapur University of Medical Sciences (IR.AJUMS.REC.1400.609). All methods were carried out in accordance with relevant guidelines and regulations.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, H., Abbasi, A., Sabahi, S. et al. Assessing the Potential Biological Activities of Postbiotics Derived from Saccharomyces cerevisiae: An In Vitro Study. Probiotics & Antimicro. Prot. (2023). https://doi.org/10.1007/s12602-023-10117-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10117-y

Keywords

Navigation