Skip to main content
Log in

A Mixture of Multi-Strain Probiotics (Lactobacillus Rhamnosus, Lactobacillus Helveticus, and Lactobacillus Casei) had Anti-Inflammatory, Anti-Apoptotic, and Anti-Oxidative Effects in Oxidative Injuries Induced By Cadmium in Small Intestine and Lung

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Introduction

Cadmium (Cd) produces severe oxidative stress, which can result in serious clinical consequences and tissue injury. The aim of the present survey was to investigate the protective effects of native Iranian probiotics (Lactobacillus rhamnosus, L. helveticus, and L. casei) against cadmium (Cd)-induced toxicity against the small intestine and lung at histopathological and biochemical levels.

Materials and Methods

Twenty-one adult male Wistar rats were randomized into three groups of seven rats (control, Cd-treated (3 mg/kg), and concomitant Cd and mix probiotic treatment for 30 days). Histological alterations were appraised via hematoxylin & eosin, Trichrome Masson, and PAS staining. The qRT-PCR technique was applied to assess the expression of pro-apoptotic, anti-apoptotic, and pro-inflammatory genes. Antioxidant enzymes activity was measured via ZellBio kits.

Results

Probiotic-treated rats displayed low production of lipid peroxides, reduced malondialdehyde (MDA) level, and elevated contents of superoxide dismutase (SOD) and catalase (CAT) enzymes compared with Cd-treated rats. The results of qRT-PCR demonstrated the up-regulation of Bax, p53, and caspase 3 and down-regulation of Bcl2, TNF-α, and IL-6 genes in both the intestine and lungs of mix probiotic-treated rats compared with Cd-treated animals. Histopathological findings revealed that the probiotic formulation improved Cd-triggered tissue damage in the intestine and lungs.

Conclusion

The strong cytoprotective benefits of Iranian probiotics against Cd-induced tissue injury observed in this study may be due to their anti-inflammatory and antioxidant properties. Therefore, additional clinical and experimental research is required to explain the precise mechanisms of probiotics’ beneficial impacts and underline their potential therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

All data are included in the text; however, the raw data of this article will be made available by the authors, without undue reservation, to any qualified researcher.

References

  1. Genchi G, Sinicropi MS, Lauria G et al (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17:1–24. https://doi.org/10.3390/ijerph17113782

    Article  CAS  Google Scholar 

  2. Oguzturk H, Ciftci O, Aydin M et al (2012) Ameliorative effects of curcumin against acute cadmium toxicity on male reproductive system in rats.Andrologia. 243–249. https://doi.org/10.1111/j.1439-0272.2012.01273.x

  3. Arroyo VS, Flores KM, Ortiz LB et al (2012) Liver and cadmium toxicity. J Drug Metab Toxicol S5:001.1–7 https://doi.org/10.4172/2157-7609.S5-001

  4. Satarug S, Vesey DA, Gobe GC (2017) Kidney Cadmium Toxicity. Diabetes and High Blood Pressure : The Perfect Storm. https://doi.org/10.1620/tjem.241.65.Correspondence

    Article  Google Scholar 

  5. Guo Y, Lam PK, Lam JCW, Zhou B (2015) Bioconcentration and Transfer of the Organophorous Flame Retardant 1, 3-dichloro 2-propyl phosphate ( TDCPP ) Causes Thyroid Endocrine Disruption and Developmental Neurotoxicity in Zebrafish Larvae. Environ Sci Technol 49:5123–5132. https://doi.org/10.1021/acs.est.5b00558

    Article  CAS  PubMed  Google Scholar 

  6. Simsek N, Karadeniz A, Kalkan Y et al (2009) Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats 164:1304–1309. https://doi.org/10.1016/j.jhazmat.2008.09.041

    Article  CAS  Google Scholar 

  7. Kundu S, Sengupta S, Chatterjee S et al (2009) Cadmium induces lung inflammation independent of lung cell proliferation : a molecular approach 15:1–15. https://doi.org/10.1186/1476-9255-6-19

    Article  Google Scholar 

  8. Wiley J (2008) Cadmium-induced neurological disorders : prophylactic role of taurine. 974–986. https://doi.org/10.1002/jat

  9. Rahimzadeh MR, Rahimzadeh MR, Kazemi S, Moghadamnia AA (2017) Cadmium toxicity and treatment: An update. Casp J Intern Med 8:135–145. https://doi.org/10.22088/cjim.8.3.135

  10. Lestari S, Lestari P, Sciences N (2021) http://www.jmolekul.com. 16:202–209. https://doi.org/10.20884/1.jm.2021.16.3.775

  11. Hossein-khannazer N, Azizi G, Eslami S et al (2019) The effects of cadmium exposure in the induction of inflammation. Immunopharmacol Immunotoxicol 0:1–8. https://doi.org/10.1080/08923973.2019.1697284

    Article  CAS  Google Scholar 

  12. Muradoglu F, Gundogdu M, Ercisli S et al (2015) Cadmium toxicity affects chlorophyll a and b content , antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol Res 48(11): 1-7. https://doi.org/10.1186/s40659-015-0001-3

  13. Eneman JD, Potts RJ, Osier M et al (2000) Suppressed oxidant-induced apoptosis in cadmium adapted alveolar epithelial cells and its potential involvement in cadmium carcinogenesis 147:215–228. https://doi.org/10.1016/s0300-483x(00)00215-8

    Article  CAS  Google Scholar 

  14. Huang Y, Xia M, Wang H et al (2014) Cadmium selectively induces MIP-2 and COX-2 through PTEN-mediated Akt activation in RAW264. 7 cells. Toxicol Sci 138:310–321. https://doi.org/10.1093/toxsci/kfu013

    Article  CAS  PubMed  Google Scholar 

  15. Popov Aleksandrov A, Mirkov I, Tucovic D et al (2021) Cadmium and immunologically-mediated homeostasis of anatomical barrier tissues. Toxicol Lett 337:38–45. https://doi.org/10.1016/j.toxlet.2020.11.008

    Article  CAS  PubMed  Google Scholar 

  16. Phuagkhaopong S, Ospondpant D, Kasemsuk T, Vivithanaporn P (2017) are mediated by MAPK and NF- k B pathways. Neurotoxicology 60:82–91. https://doi.org/10.1016/j.neuro.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  17. Tinkov AA, Gritsenko VA, Skalnaya MG et al (2018) Gut as a target for cadmium toxicity. Environ Pollut 235:429–434. https://doi.org/10.1016/j.envpol.2017.12.114

    Article  CAS  PubMed  Google Scholar 

  18. Feng P, Ye Z, Kakade A et al (2019) A review on gut remediation of selected environmental contaminants: possible roles of probiotics and gut microbiota. Nutrients 11:22. https://doi.org/10.3390/nu11010022

    Article  CAS  Google Scholar 

  19. Zheng HJ, Guo J, Jia Q et al (2019) The effect of probiotic and synbiotic supplementation on biomarkers of inflammation and oxidative stress in diabetic patients: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 142:303–313. https://doi.org/10.1016/j.phrs.2019.02.016

    Article  CAS  PubMed  Google Scholar 

  20. Śliżewska K, Markowiak-Kopeć P, Śliżewska W (2021) The role of probiotics in cancer prevention. Cancers (Basel) 13:1–22. https://doi.org/10.3390/cancers13010020

    Article  CAS  Google Scholar 

  21. Shi LH, Balakrishnan K, Thiagarajah K et al (2016) Beneficial properties of probiotics. Trop Life Sci Res 27:73–90. https://doi.org/10.21315/tlsr2016.27.2.6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Novik G, Savich V (2020) Beneficial microbiota. Probiotics and pharmaceutical products in functional nutrition and medicine. Microbes Infect 22:8–18. https://doi.org/10.1016/j.micinf.2019.06.004

    Article  CAS  PubMed  Google Scholar 

  23. Vallianou N, Stratigou T, Christodoulatos GS et al (2020) Probiotics, prebiotics, synbiotics, postbiotics, and obesity: current evidence, controversies, and perspectives. Curr Obes Rep 9:179–192. https://doi.org/10.1007/s13679-020-00379-w

    Article  PubMed  Google Scholar 

  24. Feng T, Wang J (2020) Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic : a systematic review. Gut Microbes 12:1801944. https://doi.org/10.1080/19490976.2020.1801944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Wu Y, Wang Y et al (2017) Antioxidant properties of probiotic bacteria. Nutrients 9:521. https://doi.org/10.3390/nu9050521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Albano C, Silvetti T, Brasca M (2020) Screening of lactic acid bacteria producing folate and bio-enrichment. 1–9. https://doi.org/10.1093/femsle/fnaa059

  27. Zhao J, Yu L, Zhai Q et al (2020) E ff ects of probiotic administration on hepatic antioxidative parameters depending on oxidative stress models : A meta-analysis of animal experiments. J Funct Foods 71:103936. https://doi.org/10.1016/j.jff.2020.103936

    Article  CAS  Google Scholar 

  28. Chater S, Douki T, Garrel C et al (2008) Cadmium-induced oxidative stress and DNA damage in kidney of pregnant female rats. Comptes Rendus - Biol 331:426–432. https://doi.org/10.1016/j.crvi.2008.03.009

    Article  CAS  Google Scholar 

  29. Keshtmand Z, Akbaribazm M, Bagheri Y, Oliaei R (2021) The ameliorative effects of Lactobacillus coagulans and Lactobacillus casei probiotics on CCl4-induced testicular toxicity based on biochemical, histological and molecular analyses in rat. Andrologia 53:1–10. https://doi.org/10.1111/and.13908

    Article  CAS  Google Scholar 

  30. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method 3:1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  Google Scholar 

  31. Foot NC (1933) The masson trichrome staining methods in routine laboratory use. Biotech Histochem 8:101–110. https://doi.org/10.3109/10520293309116112

    Article  Google Scholar 

  32. Livak KJ, Schmittgen TD (2023) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt C T method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

  33. Huang Z, Wang Y, Qiu M et al (2019) Effects of T-2 toxin on digestive enzyme activity, intestinal histopathology and growth in shrimp Litopenaeus vannamei. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-49004-4

    Article  CAS  Google Scholar 

  34. Saini S, Dhania G (2020) Cadmium as an environmental pollutant: ecotoxicological effects, health hazards, and bioremediation approaches for its detoxification from contaminated sites. In: Bioremediation of Industrial Waste for Environmental Safety. pp 357–387. https://doi.org/10.1007/978-981-13-3426-9_15

  35. Camkurt MA, Ebru F, Bakacak M et al (2017) Evaluation of malondialdehyde, superoxide dismutase and catalase activity in fetal cord blood of depressed mothers. Clin Psychopharmacol Neurosci 15:35–39. https://doi.org/10.9758/cpn.2017.15.1.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Apiamu A, Ogheneovo S (2021) Zinc-cadmium interactions instigated antagonistic alterations in lipid peroxidation, ascorbate peroxidase activity and chlorophyll synthesis in Phaseolus vulgaris leaves. Sci African 11:e00688. https://doi.org/10.1016/j.sciaf.2020.e00688

    Article  CAS  Google Scholar 

  37. Whanger PD (1985) Metabolic interactions of selenium with cadmium, mercury, and silver. Adv Nutr Res 7:221–250. https://doi.org/10.1007/978-1-4613-2529-1_9

    Article  CAS  PubMed  Google Scholar 

  38. Haouem S, El HA (2013) Effect of cadmium on lipid peroxidation and on some antioxidants in the liver, kidneys and testes of rats given diet containing cadmium-polluted radish bulbs. J Toxicol Pathol 26(4):359-364.https://doi.org/10.1293/tox.2013-0025

    Article  PubMed  PubMed Central  Google Scholar 

  39. Al-Baqami NM, Hamza RZ (2021) Protective effect of resveratrol against hepatotoxicity of cadmium in male rats: Antioxidant and histopathological approaches. Coatings 11(5):594. https://doi.org/10.3390/coatings11050594

    Article  CAS  Google Scholar 

  40. Hartwig A, Asmuss M, Ehleben I et al (2002) Interference by Toxic Metal Ions with DNA Repair Processes and Cell Cycle Control : Molecular Mechanisms 5(Suppl 5):797–799. https://doi.org/10.1289/ehp.02110s5797

  41. Hakansson A, Molin G (2011) Gut Microbiota and Inflammation.Nutrients 3(6):637–682. https://doi.org/10.3390/nu3060637

  42. Sharma S, Singh RL, Kakkar P (2011) Modulation of Bax / Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food Chem Toxicol 49:770–779. https://doi.org/10.1016/j.fct.2010.11.041

    Article  CAS  PubMed  Google Scholar 

  43. Bao R, Zheng S, Wang X (2017) Selenium protects against cadmium-induced kidney apoptosis in chickens by activating the PI3K / AKT / Bcl-2 signaling pathway. Environ Sci Pollut Res Int 24(25):24:20342–20353. https://doi.org/10.1007/s11356-017-9422-6

  44. Le NV, Guglielmetti S, Arioli S et al (2018) Modulation of Pulmonary Microbiota by Antibiotic or Probiotic Aerosol Therapy : A Strategy to Promote Immunosurveillance against Lung Metastases Article Modulation of Pulmonary Microbiota by Antibiotic or Probiotic Aerosol Therapy: A Strategy to Promote. Cell Rep 24:3528–3538. https://doi.org/10.1016/j.celrep.2018.08.090

    Article  CAS  Google Scholar 

  45. Access O, Karoui-kharrat D, Kaddour H et al (2017) Response of antioxidant enzymes to cadmium- induced cytotoxicity in rat cerebellar granule neurons. Int J Mol Med 14(1):87–92. https://doi.org/10.1515/biol-2017-0013

  46. Trbojevi IS, ÐZ (2010) Cadmium-induced lipid peroxidation and changes in antioxidant defense system in the rat testes : Protective role of coenzyme Q 10 and Vitamin E.Reprod. Toxicol 29(2):191–197. https://doi.org/10.1016/j.reprotox.2009.11.009

  47. Zhuang J, Nie G, Yang F et al (2019) Cadmium induces cytotoxicity through oxidative stress-mediated apoptosis pathway in duck renal tubular epithelial cells. Toxicol Vitr 61:104625. https://doi.org/10.1016/j.tiv.2019.104625

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Keshtmand.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashtbanei, S., Keshtmand, Z. A Mixture of Multi-Strain Probiotics (Lactobacillus Rhamnosus, Lactobacillus Helveticus, and Lactobacillus Casei) had Anti-Inflammatory, Anti-Apoptotic, and Anti-Oxidative Effects in Oxidative Injuries Induced By Cadmium in Small Intestine and Lung. Probiotics & Antimicro. Prot. 15, 226–238 (2023). https://doi.org/10.1007/s12602-022-09946-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09946-0

Keywords

Navigation