Skip to main content
Log in

Isolation and Characterization of a Bacillus velezensis D-18 Strain, as a Potential Probiotic in European Seabass Aquaculture

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Within the food-producing sectors, aquaculture is the one that has developed the greatest growth in recent decades, currently representing almost 50% of the world’s edible fish. The diseases can affect the final production in intensive aquaculture; in seabass, aquaculture vibriosis is one of the most important diseases producing huge economical losses in this industry. The usual methodology to solve the problems associated with the bacterial pathology has been the use of antibiotics, with known environmental consequences. This is why probiotic bacteria are proposed as an alternative fight against pathogenic bacteria. The aim of this study was to analyse a strain of Bacillus velezensis D-18 isolated from a wastewater sample collected from a fish farm, for use as probiotics in aquaculture. The strain was evaluated in vitro through various mechanisms of selection, obtaining as results for growth inhibition by co-culture a reduction of 30%; B. velezensis D-18 was able to survive at 1.5-h exposure to 10% seabass bile, and at pH 4, its survival is 5% and reducing by 60% the adhesion capacity of V. anguillarum 507 to the mucus of seabass and in vivo by performing a challenge. Therefore, in conclusion, we consider B. velezensis D-18 isolate from wastewater samples collected from the farms as a good candidate probiotic in the prevention of the infection by Vibrio anguillarum 507 in European seabass after in vitro and biosafety assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Food and Agriculture Organization of the United Nations (2020) The state of world fisheries and aquaculture. http://www.fao.org/3/ca9229en/ca9229en.pdf (December, 2020)

  2. APROMAR. Asociación Empresarial de Acuicultura de España (2019) La Acuicultura en España. http://apromar.es/sites/default/files/2019/InformeAcui/APROMAR%20Informe%20ACUICULTURA%202019%20v-1-2.pdf (December, 2020)

  3. Santos L, Ramos F (2018) Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Int J Antimicrob Agents 52:135–143. https://doi.org/10.1016/j.ijantimicag.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  4. Sarkodie EK, Zhou S, Baidoo SA, Chu W (2019) Influences of stress hormones on microbial infections. Microb Pathogenesis 131:270–276. https://doi.org/10.1016/j.micpath.2019.04.013

    Article  CAS  Google Scholar 

  5. Baptista T, Costa JSF (1999) Patologías más comunes en Dorada (Sparus aurata) y Lubina (Dicentrarchus labrax) registradas en las piscifactorías al sur del río Tajo durante 1998. Aquat Rev Científica Int Acuic en español 7:2–3

    Google Scholar 

  6. Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H (2011) Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis 34:643–661. https://doi.org/10.1111/j.1365-2761.2011.01279.x

    Article  CAS  PubMed  Google Scholar 

  7. Austin B (2011) Taxonomy of bacterial fish pathogens. Vet Res 42(1):20. https://doi.org/10.1186/1297-9716-42-20

    Article  PubMed  PubMed Central  Google Scholar 

  8. Austin B, Austin DA (2007) Chapter 10 Control 307–404, Dobbins P and Eng C Eds. Bacterial fish pathogens diseases of farmed and wild fish, Fourth Edition. Springer-praxis books in aquatic and marine sciences

  9. EUROPEAN, COMMISSION (2015) Progress report on the action plan against the rising threats from antimicrobial resistance. https://ec.europa.eu/health//sites/health/files/antimicrobial_resistance/docs/2015_amr_progress_report_en.pdf (March, 2021)

  10. Kuebutornye FKA, Delwin Abarike E, Lu Y (2019) A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol 87:820–828. https://doi.org/10.1016/j.fsi.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  11. Banerjee G, Ray AK (2017) The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 115:66–77. https://doi.org/10.1016/j.rvsc.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  12. Food and Agriculture Organization of the United Nations (2016) Probiotics in animal nutrition. http://www.fao.org/3/i5933e/i5933e.pdf (December, 2020)

  13. Bagheri T, Hedayati SA, Yavari V, Alizade M, Farzanfar A (2008) Growth, survival and gut microbial load of rainbow trout (Onchorhynchus mykiss) fry given diet supplemented with probiotic during the two months of first eeding. Turkish J Fish Aquat Sci 8:43–48

    Google Scholar 

  14. Xia Z, Zhu M, Zhang Y (2014) Effects of the probiotic Arthrobacter sp. CW9 on the survival and immune status of white shrimp (Penaeus vannamei). Lett Appl Microbiol 58:60–64. https://doi.org/10.1111/lam.12156

    Article  CAS  PubMed  Google Scholar 

  15. Nandi A, Banerjee G, Dan SK, Ghosh K, Ray AK (2018) Evaluation of in vivo probiotic efficiency of Bacillus amyloliquefaciens in Labeo rohita challenged by pathogenic strain of Aeromonas hydrophila MTCC 1739. Probiotics Antimicrob Proteins 10:391–398. https://doi.org/10.1007/s12602-017-9310-x

    Article  CAS  PubMed  Google Scholar 

  16. Campa-Córdova AI, Luna-González A, Mazón-Suastegui JM, Aguirre-Guzmán G, Ascencio F, González-Ocampo HA (2011) Efecto de bacterias probióticas en el cultivo larvario del ostión de placer Crassostrea corteziensis (Bivalvia: Ostreidae). Rev Biol Trop 59:183–191. https://doi.org/10.15517/rbt.v59i1.3188

  17. Lin HL, Shiu YL, Chiu CS, Huang SL, Liu CH (2017) Screening probiotic candidates for a mixture of probiotics to enhance the growth performance, immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against Aeromonas hydrophila. Fish Shellfish Immunol 60:474–482. https://doi.org/10.1016/j.fsi.2016.11.026

    Article  CAS  PubMed  Google Scholar 

  18. Schubiger CB, Orfe LH, Sudheesh PS, Cain KD, Shah DH, Call DR (2015) Entericidin is required for a probiotic treatment (Enterobacter sp. Strain C6–6) to protect trout from cold-water disease challenge. Appl Environ Microbiol 81:658–665. https://doi.org/10.1128/AEM.02965-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Le B, Yang SH (2018) Probiotic potential of novel Lactobacillus strains isolated from salted-fermented shrimp as antagonists for Vibrio parahaemolyticus. J Microbiol 56:138–144. https://doi.org/10.1007/s12275-018-7407-x

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen TL, Chun WK, Kim A, Kim N, Roh HJ, Lee Y, Yi M, Kim S, Park CI, Kim DH (2018) Dietary probiotic effect of Lactococcus lactis WFLU12 on low-molecular-weight metabolites and growth of Olive flounder (Paralichythys olivaceus). Front Microbiol 9:2059. https://doi.org/10.3389/fmicb.2018.02059

    Article  PubMed  PubMed Central  Google Scholar 

  21. Abd El-Rhman AM, Khattab YAE, Shalaby AME (2009) Micrococcus luteus and pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 27:175–180. https://doi.org/10.1016/j.fsi.2009.03.020

    Article  PubMed  Google Scholar 

  22. Standen BT, Rawling MD, Davies SJ, Castex M, Foey A, Gioacchini G, Carnevali O, Merrifield DL (2013) Probiotic Pediococcus acidilactici modulates both localised intestinal- and peripheral-immunity in tilapia (Oreochromis niloticus). Fish Shellfish Immunol 35:1097–1104. https://doi.org/10.1016/j.fsi.2013.07.018

    Article  CAS  PubMed  Google Scholar 

  23. Rabbee MF, Ali MS, Choi J, Hwang BS, Jeong SC, Baek KH (2019) Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 24:1046. https://doi.org/10.3390/molecules24061046

    Article  CAS  PubMed Central  Google Scholar 

  24. Adeniji AA, Loots DT, Babalola OO (2019) Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation. Appl Microbiol Biotechnol 103:3669–3682. https://doi.org/10.1007/s00253-019-09710-5

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Teng K, Wang T, Dong E, Zhang M, Tao Y, Zhong J (2020) Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize. J Appl Microbiol 128:242–254. https://doi.org/10.1111/jam.14459

    Article  CAS  PubMed  Google Scholar 

  26. Guo Y, Zhou J, Tang Y, Ma Q, Zhang J, Ji C, Zhao L (2020) Characterization and genome analysis of a zearalenone-degrading Bacillus velezensis strain ANSB01E. Curr Microbiol 77:273–278. https://doi.org/10.1007/s00284-019-01811-8

    Article  CAS  PubMed  Google Scholar 

  27. Zhang DX, Kang YH, Zhan S, Zhao ZL, Jin SN, Chen C, Zhang L, Shen JY, Wang CF, Wang GQ, Shan XF, Qian AD (2019) Effect of Bacillus velezensis on Aeromonas veronii-induced intestinal mucosal barrier function damage and inflammation in Crucian carp (Carassius auratus). Front Microbiol 10:2663. https://doi.org/10.3389/fmicb.2019.02663

    Article  PubMed  PubMed Central  Google Scholar 

  28. Emam CA, Dunlap AM (2020) Genomic and phenotypic characterization of Bacillus velezensis AMB-y1; a potential probiotic to control pathogens in aquaculture. Antonie Van Leeuwenhoek 113:2041–2052. https://doi.org/10.1007/s10482-020-01476-5

    Article  CAS  PubMed  Google Scholar 

  29. Ramlucken U, Roets Y, Ramchuran SO, Moonsamy G, van Rensburg CJ, Thantsha MS, Lalloo R (2020) Isolation, selection and evaluation of Bacillus spp. As potential multi-mode probiotics for poultry. J Gen Appl Microbiol 66:228–238. https://doi.org/10.2323/jgam.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  30. Nikoskelainen S, Salminen S, Bylund G, Ouwehand AC (2001) Characterization of the properties of human and dairy derived probiotics for prevention of infectious diseases in fish. Appl Environ Microbiol 67:2430–2435. https://doi.org/10.1128/AEM.67.6.2430-2435.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai Y, Benno Y, Nakase T, Oh TK (1998) Specific probiotic characterization of Weissella hellenica DS-12 isolated from flounder intestine. J Gen Appl Microbiol 44:311–316. https://doi.org/10.2323/jgam.44.311

    Article  CAS  PubMed  Google Scholar 

  32. Sorroza L, Padilla D, Acosta F, Román L, Grasso V, Vega J, Real F (2012) Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum. Vet Microbiol 155:369–373. https://doi.org/10.1016/j.vetmic.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  33. van der Marel M, Schroers V, Neuhaus H, Steinhagen D (2008) Chemotaxis towards, adhesion to, and growth in carp gut mucus of two Aeromonas hydrophila strains with different pathogenicity for Common carp, Cyprinus carpio L. J Fish Dis 31:321–330. https://doi.org/10.1111/j.1365-2761.2008.00902.x

    Article  PubMed  Google Scholar 

  34. Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25:333–342. https://doi.org/10.1046/j.1365-2761.2002.00375.x

    Article  CAS  Google Scholar 

  35. Gatesoupe FJ (2007) Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol 14:107–114. https://doi.org/10.1159/000106089

    Article  CAS  Google Scholar 

  36. Ringø E, Løvmo L, Kristiansen M, Bakken Y, Salinas I, Myklebust R, Olsen RE, Mayhew TM (2010) Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review. Aquac Res 41:451–467. https://doi.org/10.1111/j.1365-2109.2009.02339.x

    Article  Google Scholar 

  37. Newaj-Fyzul A, Adesiyun AA, Mutani A, Ramsubhag A, Brunt J, Austin B (2007) Bacillus subtilis AB1 controls aeromonas infection in Rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 103:1699–1706. https://doi.org/10.1111/j.1365-2672.2007.03402.x

    Article  CAS  PubMed  Google Scholar 

  38. Gupta A, Gupta P, Dhawan A (2014) Dietary supplementation of probiotics affects growth, immune response and disease resistance of Cyprinus carpio fry. Fish Shellfish Immunol 41:113–119. https://doi.org/10.1016/j.fsi.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  39. Abdel-Tawwab M, Abdel-Rahman AM, Ismael NEM (2008) Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 280:185–189. https://doi.org/10.1016/j.aquaculture.2008.03.055

    Article  Google Scholar 

  40. Mesalhy AS, Abdel-Galil AY, Abdel-Aziz GA, Fathi MM (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 25:128–136. https://doi.org/10.1016/j.fsi.2008.03.013

    Article  CAS  Google Scholar 

  41. Aly SM, Mohamed MF, John G (2008) Effect of probiotics on the survival, growth and challenge infection in Tilapia nilotica (Oreochromis niloticus). Aquac Res 39:647–656. https://doi.org/10.1111/j.1365-2109.2008.01932.x

    Article  CAS  Google Scholar 

  42. Ridha MT, Azad IS (2012) Preliminary evaluation of growth performance and immune response of Nile tilapia Oreochromis niloticus supplemented with two putative probiotic bacteria. Aquac Res 43:843–852. https://doi.org/10.1111/j.1365-2109.2011.02899.x

    Article  CAS  Google Scholar 

  43. Cao H, He S, Wei R, Diong M, Lu L (2011) Bacillus amyloliquefaciens G1: a potential antagonistic bacterium against eel-pathogenic Aeromonas hydrophila. Evid Based Complement Alternat Med 2011:824104. https://doi.org/10.1155/2011/824104

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reda RM, Selim KM (2014) Evaluation of Bacillus amyloliquefaciens on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, Oreochromis niloticus. Aquaculture 23:203–217. https://doi.org/10.1007/s10499-014-9809-z

    Article  CAS  Google Scholar 

  45. Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274:1–14. https://doi.org/10.1016/j.aquaculture.2007.11.019

    Article  Google Scholar 

  46. Pan X, Wu T, Zhang L, Song Z, Tang H, Zhao Z (2008) In vitro evaluation on adherence and antimicrobial properties of a candidate probiotic Clostridium butyricum CB2 for farmed fish. J Appl Microbiol 105:1623–1629. https://doi.org/10.1111/j.1365-2672.2008.03885.x

    Article  CAS  PubMed  Google Scholar 

  47. Balcázar JL, Vendrell D, de Blas I, Ruiz-Zarzuela I, Gironés O, Múzquiz JL (2007) In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens. Vet Microbiol 122:373–380. https://doi.org/10.1016/j.vetmic.2007.01.023

    Article  CAS  PubMed  Google Scholar 

  48. Chabrillon M, Rico RM, Balebona MC, Morinigo MA (2005) Adhesion to sole, Solea senegalensis Kaup, mucus of microorganisms isolated from farmed fish, and their interaction with Photobacterium damselae subsp. piscicida. J Fish Dis 28:229–237. https://doi.org/10.1111/j.1365-2761.2005.00623.x

    Article  CAS  PubMed  Google Scholar 

  49. Hoehne-Reitan K, Kjørsvik E, Reitan K (2001) Development of the pH in the intestinal tract of larval turbot. Mar Biol 139:1159–1164. https://doi.org/10.1007/s002270100653

    Article  CAS  Google Scholar 

  50. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671. https://doi.org/10.1128/mmbr.64.4.655-671.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N, Blanquet-Diot S (2019) Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol Rev 43:457–489. https://doi.org/10.1093/femsre/fuz013

    Article  CAS  PubMed  Google Scholar 

  52. Kang CH, Gu T, So JS (2018) Possible probiotic lactic acid bacteria isolated from oysters (Crassostrea gigas). Probiotics Antimicrob Proteins 10:728–739. https://doi.org/10.1007/s12602-017-9315-5

    Article  CAS  PubMed  Google Scholar 

  53. Vanderpool C, Yan F, Polk DB (2008) Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 14:1585–1596. https://doi.org/10.1002/ibd.20525

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Félix Acosta, José Ramos-Vivas. Methodology: Félix Acosta, Luis Monzón-Atienza, Jorge Galindo-Villegas, Jimena Bravo, Silvia Torrecillas, Daniel Montero, Ana Franco González-de Canales, Inés. García de la Banda, José Ramos-Vivas. Formal analysis and investigation: Félix Acosta, Luis Monzón-Atienza, Jorge Galindo-Villegas, Daniel Montero. Writing—original draft preparation: Luis Monzón-Atienza, Félix Acosta, José Ramos-Vivas. Writing—review and editing: Luis Monzón-Atienza, Félix Acosta, Jorge Galindo-Villegas, José Ramos-Vivas.

Corresponding author

Correspondence to Félix Acosta.

Ethics declarations

Ethical Statement

All procedures with the fish agreed to the guidelines of the European Union Council (86/609/EU) and Spanish legislation (RD 53/2013) and were approved by the Bioethical Committee of the University of Las Palmas de Gran Canaria (OEBA-ULPGC-32/2020).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monzón-Atienza, L., Bravo, J., Torrecillas, S. et al. Isolation and Characterization of a Bacillus velezensis D-18 Strain, as a Potential Probiotic in European Seabass Aquaculture. Probiotics & Antimicro. Prot. 13, 1404–1412 (2021). https://doi.org/10.1007/s12602-021-09782-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09782-8

Keywords

Navigation