Skip to main content

Advertisement

Log in

Exploring Beneficial/Virulence Properties of Two Dairy-Related Strains of Streptococcus infantarius subsp. infantarius

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The genus Streptococcus includes various species, remarkably different in their behavior, applications, virulence, and safety. Taxonomically Streptococcus infantarius subsp. infantarius belonging to the Streptococcus bovis group, which includes several pathogen species, however, has been found as predominant species in some African dairy products that are widely consumed and considered to be safe. Streptococcus infantarius subsp. infantarius’ safety may be questioned due to the association of this species with clinical cases. In this study, isolates from dairy origin were selected based on their bacteriocinogenic potential and differentiated by their RAPD-PCR profiles. Two strains were identified by 16S rRNA sequencing as St. infantarius subsp. infantarius and investigated regarding their potential beneficial properties and factors related to virulence and safety. A series of in vitro tests included properties related to survival in the gastrointestinal tract and beneficial intestinal activities. Production of bacteriocin/s, detection of related genes, and partial characterization of expressed antimicrobial protein were evaluated. Genes related to folate biosynthesis were detected in both studied strains. Evaluation of physiological tests related to strains virulence, adhesion, and resistance to antibiotics and detections of virulence and biogenic amines production-related genes were also investigated. Taking in consideration all the aspects of the specific nature of St. infantarius subsp. infantarius K1–4 and K5–1 (beneficial properties and virulence characteristics), both strains cannot be considered safe for human or other animals application, even though they have been isolated from dairy products. This study is highlighting the importance of evaluation for presence of potential virulence factors in newly characterized strains in order to be confident in their safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Du Toit M, Huch M, Cho G-S, Franz CMAP (2014) The genus Streptococcus. Chapter 23. In: Holzapfel WH, Wood BJB (eds) Lactic acid bacteria – biodiversity and taxonomy. John Wiley & Sons Ltd., Chichester, pp 457–505

    Google Scholar 

  2. Corredoira J, Coira A, Alonso MA, Varela J (2008) Association between Streptococcus infantarius (Formerly S. bovis II/1). J Clin Microbiol 46(4):1570. https://doi.org/10.1128/JCM.00129-08

    Article  Google Scholar 

  3. Schlegel L, Grimont F, Ageron E, Grimont PAD, Bouvet A (2003) Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov. Int J System Evolut Microbiol 53:631–645

    CAS  Google Scholar 

  4. Boleij A, Gelder MHJ, Swinnkels DW, Tjalsma H (2011) Clinical importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clin Infect Dis 53(9):870–878. https://doi.org/10.1093/cid/cir609

    Article  CAS  Google Scholar 

  5. Jans C, Kaindi DWM, Böck D, Njage PMK, Kouamé-Sina SM, BonfohB LC, Meile L (2013) Prevalence and comparison of Streptococcus infantarius subsp. infantarius and Streptococcus gallolyticus subsp. macedonicus in raw and fermented dairy products from east and West Africa. Int J Food Microbiol 167(2):186–195. https://doi.org/10.1016/j.ijfoodmicro.2013.09.008

    Article  Google Scholar 

  6. Leuschner RGK, Robinson TP, Hugas M, Cocconcelli PS, Richard-Forget F, Klein G, Licht TR, Nguyen-The C, Querol A, Richardson M, Suarez JE, Thrane U, Vlak JM, von Wright A (2010) Qualified presumption of safety (QPS): a generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA). Trends Food Sci Technol 21:425–435

    CAS  Google Scholar 

  7. De Vuyst L, Tsakalidou E (2008) Streptococcus macedonicus, a multi-functional and promising species for dairy fermentations. Int Dairy J 18:476–485

    Google Scholar 

  8. Pieterse R, Todorov SD, Dicks LMT (2010) Mode of action and in vitro susceptibility of mastitis pathogens to macedocin ST91KM and preparation of a teat seal containing the bacteriocin. Braz J Microbiol 41(1):133–145

    Google Scholar 

  9. Laiño JE, LeBlanc JG, Savoy de Giori G (2019) Production of natural folates by lactic acid bacteria starter cultures isolated from artisanal Argentinian yogurt. Can J Microbiol 58(5):581–585. https://doi.org/10.1139/w2012-026

    Article  CAS  Google Scholar 

  10. Bouvet A, Grimont F, Collins MD, Benaoudia F, Devine C, Regnault B, Grimont PAD (1997) Streptococcus infantarius sp. nov. related to S. bovis and S. equinus. In: Horaud T, Bouvet A, Leclercq R, de Montclos H, Sicard M (eds) Streptococci and the host. Advances in experimental medicine and biology, vol 418. Springer, Boston, pp 393–395

    Google Scholar 

  11. Schlegel L, Grimont F, Collins MD, Régnault B, Grimont PAD, Bouvet A (2000) Streptococcus infantarius sp. nov., Streptococcus infantarius subsp. infantarius subsp. nov. and Streptococcus infantarius subsp. coli subsp. nov., isolated from humans and food. Int J System Evolut Microbiol 50:1425–1434

    CAS  Google Scholar 

  12. Hoshino T, Fujiwara T, Kilian M (2005) Use of phylogenetic and phenotypic analyses to identify nonhemolytic streptococci isolated from bacteremic patients. J Clin Microbiol 43:6073–6085

    CAS  Google Scholar 

  13. Abdelgadir W, Nielsen DS, Hamad S, Jakobsen M (2008) A traditional Sudanese fermented camel’s milk product, gariss, as a habitat of Streptococcus infantarius subsp. infantarius. Int J Food Microbiol 127:215–219

    CAS  Google Scholar 

  14. Herrera P, Min Kwon Y, Ricke SC (2009) Ecology and pathogenicity of gastrointestinal Streptococcus bovis. Anaerobe 15:44–54

    Google Scholar 

  15. Jans C, Gerber A, Bugnard J, Njage PMK, Lacroix C, Meile L (2012) Novel Streptococcus infantarius subsp. infantarius variants harboring lactose metabolism genes homologous to Streptococcus thermophilus. Food Microbiol 31:33–42

    CAS  Google Scholar 

  16. Kaindi DWM, Kogi-Makau W, Lule GN, Kreikemeyer B, Renault P, Bonfoh B, Otaru N, Schmid T, Meile L, Hattendorf J, Jans C (2018) Colorectal cancer-associated Streptococcus infantarius subsp. infantarius differs from a major dairy lineage providing evidences for pathogenic, pathobiont and food-grade lineages. Sci Reports 8:9181. https://doi.org/10.1038/s41598-018-27383-4

    Article  CAS  Google Scholar 

  17. Todorov SD, Ho P, Vaz-Velho M, Dicks LMT (2010) Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from beloura and chouriço, traditional pork products from Portugal. Meat Sci 84(3):334–343

    CAS  Google Scholar 

  18. De Vos P., Garrity GM, Jones D., Kreig NR, Ludwig W, Rainey FA, Schleifel K-H, Whitman WB (2009) Bergey’s manual of systematic bacteriology. Volume 3. The Firmicutes. Wiley Publishing Group. https://doi.org/10.1002/9781118960608

  19. de Moraes GMD, de Abreu LR, do Egito AS, Salles HO, da Silva LMF, Nero LA, Todorov SD, dos Santos KMO (2016) Functional properties of Lactobacillus mucosae strains isolated from Brazilian goat milk. Probiotics Antimicrob Prot 9(3):235–245

    Google Scholar 

  20. Dos Santos KMO, Vieira ADS, Salles HO, Oliveira JS, Rocha CRC, Borges MF, Bruno LM, Franco BDGM, Todorov SD (2015) Safety, beneficial and technological properties of Enterococcus faecium isolated from Brazilian cheeses. Braz J Microbiol 46(1):237–249

    Google Scholar 

  21. Todorov SD, Stojanovski S, Iliev I, Moncheva P, Nero LA, Ivanova IV (2017) Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product “Lukanka”. Braz J Microbiol 48(3):576–586

    CAS  Google Scholar 

  22. Ugarte MB, Guglielmotti D, Giraffa G, Reinheimer J, Hynes E (2006) Nonstarter lactobacilli isolated from soft and semihard Argentinean cheeses: genetic characterization and resistance to biological barriers. J Food Protect 69(12):2983–2991

    CAS  Google Scholar 

  23. Todorov SD, Botes M, Guigas C, Schillinger U, Wiid I, Wachsman MB, Holzapfel WH, Dicks LMT (2008) Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol 104(2):465–477

    CAS  Google Scholar 

  24. Walker DK, Gilliland SE (1993) Relationship among bile tolerance, bile salt deconjugation and assimilation of cholesterol by Lactobacillus acidophilus. J Dairy Sci 76(4):956–961. https://doi.org/10.3168/jds.S0022-0302(93)77422-6

    Article  CAS  Google Scholar 

  25. Vizoso-Pinto MG, Franz CMAP, Schillinger U, Holzapfel WH (2006) Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int J Food Microbiol 109:205–214

    CAS  Google Scholar 

  26. Charteris WP, Kelly PM, Morelli L, Collins JK (2001) Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli. J Food Protect 64(1):2007–2014

    CAS  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    CAS  Google Scholar 

  28. Church FC, Swaisgood HE, Porter DH, Catignani GL (1983) Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci 66:1219–1227

    CAS  Google Scholar 

  29. Todorov SD, Dicks LMT (2008) Evaluation of lactic acid bacteria from kefir, molasses and olive brine as possible probiotics based on physiological properties. Ann Microbiol 58(4):661–670

    Google Scholar 

  30. Meucci A, Rossetti L, Zago M, Monti L, Giraffa G, Carminati D, Tidona F (2018) Folates biosynthesis by Streptococcus thermophilus during growth in milk. Food Microbiol 69:116–122

    CAS  Google Scholar 

  31. Cucick ACC (2019) Seleção e aplicação de bactérias láticas produtores de folato para obtenção de um leite fermentado bioenriquecido e avaliação de biodisponibilidade de folato produzido. MSc disertation, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil

  32. Martín-Platero AM, Valdivia E, Maqueda M, Martínez-Bueno M (2009) Characterization and safety evaluation of enterococci isolated from Spanish goats’ milk cheeses. Int J Food Microbiol 132:24–32

    Google Scholar 

  33. Rivas P, Alonso J, Moya J, de Gorgolas M, Martinelli J, Fernandez Guerrero ML (2005) The impact of hospital-acquired infections on the microbial etiology and prognosis of late-onset prosthetic valve endocarditis. Chest 128(2):764–771. https://doi.org/10.1378/chest.128.2.764

    Article  Google Scholar 

  34. Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clinic Microbiol 42:4473–4479. https://doi.org/10.1128/JCM.42.10.4473-4479.2004

    Article  CAS  Google Scholar 

  35. Maneerat K, Yongkiettrakul S, Kramomtong I, Tongtawe P, Tapchaisri P, Luangsuk P, Chaicumpa W, Gottschalk M, Srimanote P (2013) Virulence genes and genetic diversity of Streptococcus suis serotype 2 isolates from Thailand. Transboundary Emerging Dis 60(Suppl. 2):69–79. https://doi.org/10.1111/tbed.12157

    Article  Google Scholar 

  36. Hamza AA, El Gaali EI, Mahdi AA (2009) Use of the RAPD-PCR fingerprinting and API system for clustering lactic acid bacteria isolated from traditional Sudanese sour milk (Roab). Afr J Biotechnol 8:3399–3404

    CAS  Google Scholar 

  37. Wullschleger S (2009) Biodiversity and microbial safety of artisanal Malian sour milk fènè and development of adapted starter cultures for controlled production. PhD thesis No. 18287, ETH Zurich, Zurich, Switzerland

  38. Sidda A, Kalistrom G, Meyer J (2019) Streptococcus bovis group bacteremia in the 21st century. Review of 42 episodes over a 12 year period (2006-2017) at a large community teaching hospital. Inf Dis Clin Pract 27:22–27

    Google Scholar 

  39. Rezac S, Kok CR, Heermann M, Hutkins R (2018) Fermented foods as a dietary source of live organisms. Front Microbiol 9:1785. https://doi.org/10.3389/fmicb.2018.01785

    Article  Google Scholar 

  40. Uriot O, Denis S, Junjua M, Roussel Y, Dary-Mourot A, Blanquet-Diot S (2017) Streptococcus thermophilus: from yogurt starter to a new promising probiotic candidate? J Funct Foods 37:74–89

    CAS  Google Scholar 

  41. Poyart C, Quesne G, Trieu-Cuot P (2002) Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of ‘Streptococcus infantarius subsp. coli’ as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype II.2 as Streptococcus pasteurianus sp. nov. Int J Syst Evolut Microbiol 52:1247–1255

    CAS  Google Scholar 

  42. De Vuyst L, Vandamme EJ (1994) Bacteriocins of lactic acid bacteria: microbiology, genetics, and applications. Blackie Academic & Professional, London

    Google Scholar 

  43. Ivanova I, Miteva V, Stefanova T, Pantev A, Budakov I, Danova S, Moncheva P, Nikolova I, Dousset X, Boyaval P (1998) Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int J Food Microbiol 42(3):147–158

    CAS  Google Scholar 

  44. Todorov SD, Dicks LMT (2005) Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives. J Basic Microbiol 45(4):312–322

    CAS  Google Scholar 

  45. Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LMT (2005) An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soy beans. Int J Antimicrob Agents 25(6):508–513

    CAS  Google Scholar 

  46. Lewus CB, Sun S, Montville JT (1992) Production of an α–amylase sensitive bacteriocin by an atypical Leuconostoc paramesenteroides strain. Appl Environ Microbiol 58:143–149

    CAS  Google Scholar 

  47. Keppler K, Geisen R, Holzapfel WH (1994) An α–amylase sensitive bacteriocin of Leuconostoc carnosum. Food Microbiol 11:39–45

    CAS  Google Scholar 

  48. Gutierrez-Cortes C, Suarez H, Butirago G, Nero LA, Todorov SD (2018) Characterization of bacteriocins produced by strains of Pediococcus pentosaceus isolated from Minas cheese. Ann Microbiol 68(6):383–398

    CAS  Google Scholar 

  49. Favaro F, Basaglia M, Casella S, Hue I, Dousset X, Franco BDGM, Todorov SD (2014) Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from homemade white brine cheese. Food Microbiol 38(1):228–239

    CAS  Google Scholar 

  50. Atrih A, Rekhif N, Milliere JB, Lefebvre G (1993) Detection and characterization of a bacteriocin produced by Lactobacillus plantarum C19. Can J Microbiol 39:1173–1179

    CAS  Google Scholar 

  51. Van Reenen CA, Dicks LMT, Chikindas ML (1998) Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 84:31131–31137

    Google Scholar 

  52. Ko S-H, Ahn C (2000) Bacteriocin production by Lactococcus lactis KCA2386 isolated from white kimachi. Food Sci Biotechnol 9:263–269

    Google Scholar 

  53. Noonpakdee W, Santivarangkna C, Jumriangrit P, Sonomoto K, Panyim S (2003) Isolation of nisin-producing Lactococcus lacts WNC 20 strain from nham, a traditional Thai fermneted sausage. Int J Food Microbiol 81(2):137–145

    CAS  Google Scholar 

  54. Motlagh A, Bukhtyarova M, Ray B (1994) Compleate nuclotide sequence of pSMB 74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. J Appl Microbiol 18(6):305–312. https://doi.org/10.1111/j.1472-765X.1994.tb00876.x

    Article  CAS  Google Scholar 

  55. Venema K, Kok J, Marugg JD, Toonen MY, Ledeboer AM, Venema G, Chikindas ML (1995) Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17(3):515–522

    CAS  Google Scholar 

  56. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LMT (2018) Function and emerging applications of bacteriocins. Curr Opinion Biotechnol 49:23–28

    CAS  Google Scholar 

  57. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84(5):759–768. https://doi.org/10.1046/j.1365-2672.1998.00407.x

    Article  CAS  Google Scholar 

  58. Swagerty DL, Walling A, Klein RM (2002) Lactose intolerance. Amer Family Phys 65:1845–1850

    Google Scholar 

  59. Hidalgo-Morales M, Robles-Olvera V, García HS (2005) Lactobacillus reuteri β-galactosidase activity and low milk acidification ability. Can J Microbiol 51(3):261–267. https://doi.org/10.1139/w04-134

    Article  CAS  Google Scholar 

  60. Taranto MPDG, De Llano A, Rodriguez A, De Ruiz HP, Font de Valdez G (1996) Bile tolerance and cholesterol reduction by Enterococcus faecium, a candidate microorganism for the use as a dietary adjunct in milk products. Milchwissenschaft 51:383–385

    CAS  Google Scholar 

  61. Vinderola G, Capellini B, Villarreal F, Suarez V, Quiberoni A, Reinheimer J (2008) Usefulness of a set of simple in vitro tests for the screening and identification of probiotic candidate strains for dairy use. LWT – Food Sci Technol 41:1678–1688

    CAS  Google Scholar 

  62. De Smet I, Van Hoorde L, Vande Woestyne M, Cristianes H, Verstraete W (1995) Significance of bile salt hydrolytic activities of lactobacilli. J Appl Bacteriol 79:292–301

    Google Scholar 

  63. Cotter PD, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67(3):429–453. https://doi.org/10.1128/MMBR.67.3.429-453.2003

    Article  CAS  Google Scholar 

  64. Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16(3):189–199

    CAS  Google Scholar 

  65. Iñiguez-Palomares C, Pérez-Morales R, Acedo-Félix E (2007) Evaluation of probiotic properties in Lactobacillus isolated from small intestine of piglets. Rev Latinoamer Microbiol 49(3–4):46–54

    Google Scholar 

  66. Jensen H, Grimmer S, Naterstad K, Axelsson L (2012) In vitro testing of commercial and potential probiotic lactic acid bacteria. Int J Food Microbiol 153:216–222

    Google Scholar 

  67. Orlowski A, Bielecka M (2006) Preliminary characteristics of Lactobacillus and Bifidobacterium strains as probiotic candidates. Pol J Food Nutr Sci 56(3):269–275

    Google Scholar 

  68. Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G, Reinheimer J, Giraffa G (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28:1033–1040

    CAS  Google Scholar 

  69. Boris S, Suárez JE, Vázquez F, Barbés C (1998) Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infect Immun 66(5):1985–1989

    CAS  Google Scholar 

  70. Archimbaud C, Shankar N, Forestier C, Baghdayan A, Gilmore MS, Charbonne F, Joli B (2002) In vitro adhesive properties and virulence factors of Enterococcus faecalis strains. Res Microbiol 153:75–80

    CAS  Google Scholar 

  71. EFSA (2008) Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. Prepared by the panel on additives and products or substances used in animal feed. EFSA J 732:1–15

    Google Scholar 

  72. Lee KW, Park JY, Sa HD, Jeong JH, Jin DE, Heo HJ, Kim JH (2014) Probiotic properties of Pediococcus strains isolated from jeotgals, salted and fermented Korean sea-food. Anaerobe 28:199–206

    CAS  Google Scholar 

  73. Sharma P, Tomar SK, Sangwan V, Goswami P, Singh R (2015) Antibiotic resistance of Lactobacillus sp. isolated from commercial probiotic preparations. J Food Saf 36:38–51

    Google Scholar 

  74. Botta C, Langerholc T, Cencič A, Cocolin L (2014) In vitro selection and characterization of new probiotic candidates from table olive microbiota. PLoS One 9:e94457. https://doi.org/10.1371/journal.pone.0094457

    Article  CAS  Google Scholar 

  75. Tulini FL, Winkelstrroter LK, de Martinis ECP (2013) Identification and evaluation of the probiotic potential of Lactobacillus paraplantarum FT259, a bacteriocinogenic strain isolated from Brazilian semi-hard cheese. Anaerobe 22:57–63

    CAS  Google Scholar 

  76. Kos B, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94(6:981–987. https://doi.org/10.1046/j.1365-2672.2003.01915.x

    Article  Google Scholar 

  77. Redondo NC 2008) Avaliação in vitro de características probióticas do Enterococcus faecium CRL183 e do Lactobacillus helveticus ssp. jugurti 416. PhD thesis, UNESP, Araraquara, SP, Brazil

  78. Beganović J, Kos B, Leboš Pavunc A, Uroić K, Džidara P, Šušković J (2013) Proteolytic activity of probiotic strain Lactobacillus helveticus M92. Ananerobe 20:58–64. https://doi.org/10.1016/j.anaerobe.2013.02.004

    Article  CAS  Google Scholar 

  79. Briggiler Marcó M, Zacarías MF, Vinderola G, Reinheimer JA, Quiberoni A (2014) Biological and probiotic characterisation of spontaneous phage-resistant mutants of Lactobacillus plantarum. Int Dairy J 39:64–70

    Google Scholar 

  80. Jeronymo-Ceneviva AB, de Paula AT, Silva LF, Todorov SD, Franco BDGM, Penna ALB (2014) Probiotic properties of lactic acid bacteria isolated from water-buffalo mozzarella cheese. Probiotics Antimicrob Prot 6:141–156

    CAS  Google Scholar 

  81. Casarotti SN, Carneiro BM, Todorov SD, Nero LA, Rahal P, Penna ALB (2017) In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water - buffalo mozzarella cheese. Ann Microbiol 67(04):289–301

    CAS  Google Scholar 

  82. Ramiah K, van Reenen CA, Dicks LMT (2007) Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR. Int J Food Microbiol 116:405–409

    CAS  Google Scholar 

  83. Moraes P, Perin L, Todorov SD, Silva Júnior A, Franco BDGM, Nero LA (2012) Bacteriocinogenic and virulence potential of Enterococcus isolates obtained from raw milk and cheese. J Appl Microbiol 113(2):318–328

    CAS  Google Scholar 

  84. Perin LM, Miranda RO, Todorov SD, Franco BDGDM, Nero LA (2014) Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. Int J Food Microbiol 185:121–126

    CAS  Google Scholar 

  85. Klein G, Hallmann C, Casas IA, Abad J, Louwers J, Reuter G (2000) Exclusion of vanA, vanB and vanC type glycopeptide resistance in strains of Lactobacillus reuteri and Lactobacillus rhamnosus used as probiotics by polymerase chain reaction and hybridization methods. J Appl Microbiol 89:815–824

    CAS  Google Scholar 

Download references

Funding

Program for Visiting Professors at University of Sao Paulo, Sao Paulo, SP, Brazil (2016.1.920.93); CNPq (National Council for Scientific and Technological Development), Brasilia, DF, Brazil; NRF (NRF-2018M3A9F3021964; NRF-2018M3A9F3021655), Seoul, South Korea; Handong Global University, Pohang, South Korea; EMBRAPA (Brazilian Agricultural Research Corporation), Brasilia, DF, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetoslav Dimitrov Todorov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, K.M.O., de Matos, C.R., Salles, H.O. et al. Exploring Beneficial/Virulence Properties of Two Dairy-Related Strains of Streptococcus infantarius subsp. infantarius. Probiotics & Antimicro. Prot. 12, 1524–1541 (2020). https://doi.org/10.1007/s12602-020-09637-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09637-8

Keywords

Navigation