Skip to main content

Advertisement

Log in

In Vivo Implications of Potential Probiotic Lactobacillus reuteri LR6 on the Gut and Immunological Parameters as an Adjuvant Against Protein Energy Malnutrition

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The present study investigated the impact of probiotic Lactobacillus reuteri LR6 on the gut and systemic immunity using protein energy malnourished (PEM) murine model. Thirty male Swiss albino mice were divided into five groups: control (C), malnourished (M), probiotic fermented milk (PFM), skim milk (SM), and bacterial suspension (BS) with six mice per group. Group C was fed with conventional diet throughout the study while the other groups were fed with protein calorie restricted diet until the development of malnutrition. After development of malnutrition, group M was continued with the restricted diet while other groups were fed with re-nourished diet supplemented with PFM, SM, and BS for 1 week, respectively. Thereafter, mice were sacrificed and different histological, microbiological, and immunological parameters were studied. Probiotics feeding in PEM model as fermented product or bacterial suspension improved the intestinal health in terms of intact morphology of colonic crypts, normal goblet cells, and intact lamina propria with no inflammation in large intestine, absence of fibrosis, and no inflammation in spleen. The number of secretory IgA+ cells was significantly higher in group PFM and BS. Also, increase in the phagocytic percentage of the macrophages and bone marrow derived dendritic cells (DCs) were observed in the PFM and BS group in comparison to the group M. In comparison to the group M and SM, lactobacilli, bifidobacteria, and Firmicutes counts were significantly higher in the group PFM and BS. This study concludes that probiotic supplementation to re-nutrition diet could emerge as wonder therapeutics against PEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Garg S, Malik RK, Singh TP, Renuka (2014) Child nutrition: a pillar to development. IJAR 2(1):766–772

  2. Ghosh TS, Gupta SS, Bhattacharya T et al (2014) Gut microbiomes of Indian children of varying nutritional status. PLoS One 9(4):e95547

    PubMed  PubMed Central  Google Scholar 

  3. Gupta SS, Mohammed MH, Ghosh TS, Kanungo S, Nair GB, Mande SS (2011) Metagenome of the gut of a malnourished child. Gut Pathog 3(1):7

    PubMed  PubMed Central  Google Scholar 

  4. Kane AV, Dinh DM, Ward HD (2014) Childhood malnutrition and the intestinal microbiome. Pediatr Res 77:256–262

    PubMed  PubMed Central  Google Scholar 

  5. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lalles JP (2012) Long term effects of pre-and early postnatal nutrition and environment on the gut. J Anim Sci 90(4):421–429

    PubMed  Google Scholar 

  7. Million M, Diallo A, Raoult D (2017) Gut microbiota and malnutrition. Microb Pathog 106:127–138

    PubMed  Google Scholar 

  8. Monira S, Nakamura S, Gotoh K et al (2011) Gut microbiota of healthy and malnourished children in Bangladesh. Front Microbiol 2:228

    PubMed  PubMed Central  Google Scholar 

  9. Preidis GA, Ajami NJ, Wong MC, Bessard BC, Conner ME, Petrosino JF (2015) Composition and function of the undernourished neonatal mouse intestinal microbiome. J Nutr Biochem 26(10):1050–1057

    CAS  PubMed  Google Scholar 

  10. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li JV, Holmes E, Nicholson J, Knights D, Ursell LK, Knight R, Gordon JI (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339(6119):548–554

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tilg H, Moschen AR (2013) Gut microbiota: malnutrition and microbiota—a new relationship? Nat Rev Gastroenterol Hepatol 10(5):261–262

    PubMed  Google Scholar 

  12. de Azevedo JF, Hermes C, Manzano MA et al (2007) Análise morfométrica da parede intestinal do íleo de ratos submetidos a intensa carência de proteínas. Arq Ciênc Vet Zool Unipar 10(2):85–90

    Google Scholar 

  13. França TG, Ishikawa LL, Zorzella-Pezavento SF, Chiuso-Minicucci F, da Cunha MLRS, Sartori A (2009) Impact of malnutrition on immunity and infection. J Venom Anim Toxins Incl Trop Dis 15(3):374–390

    Google Scholar 

  14. Galdeano CM, Núñez IN, de LeBlanc AD et al (2011) Impact of a probiotic fermented milk in the gut ecosystem and in the systemic immunity using a non-severe protein-energy-malnutrition model in mice. BMC Gastroenterol 11(1):64

    PubMed Central  Google Scholar 

  15. Gurmini J, Cecílio WA, Schuler SL et al (2005) In-uterus malnutrition and its changes in the small bowel of Wistar rats at birth and after lactation. J Bras Patol Med Lab 41(4):271–278

    Google Scholar 

  16. Hermes C, Azevedo JF, Araújo EJ et al (2008) Intestinal ascending colon morphometrics in rats submitted to severe protein malnutrition. Int J Morphol 26(1):5–11

    Google Scholar 

  17. de Melo JF, Da Costa TB, da Costa Lima TD et al (2013) Long-term effects of a neonatal low-protein diet in rats on the number of macrophages in culture and the expression/production of fusion proteins. Eur J Nutr 52(5):1475–1482

    PubMed  Google Scholar 

  18. Gonzalez B, Guerra C, Morris D et al (2010) Dendritic cells in infectious disease, hypersensitivity, and autoimmunity. Int J Interferon Cytokine Mediat Res 2(1):137–147

    CAS  Google Scholar 

  19. Hughes SM, Amadi B, Mwiya M, Nkamba H, Tomkins A, Goldblatt D (2009) Dendritic cell energy results from endotoxemia in severe malnutrition. J Immunol 183(4):2818–2826

    CAS  PubMed  Google Scholar 

  20. Ibrahim MK, Barnes JL, Osorio EY, Anstead GM, Jimenez F, Osterholzer JJ, Travi BL, Ahuja SS, White AC Jr, Melby PC (2014) Deficiency of lymph node-resident dendritic cells (DCs) and dysregulation of DC chemoattractants in a malnourished mouse model of Leishmania donovani infection. Infect Immun 82(8):3098–3112

    PubMed  PubMed Central  Google Scholar 

  21. Mello AS, de Oliveira DC, Bizzarro B, Sá-Nunes A, Hastreiter AA, de Oliveira Beltran JS, Xavier JG, Borelli P, Fock RA (2014) Protein malnutrition alters spleen cell proliferation and IL-2 and IL-10 production by affecting the STAT-1 and STAT-3 balance. Inflammation 37(6):2125–2138

    CAS  PubMed  Google Scholar 

  22. Stapleton PP, Fujita J, Murphy EM, Naama HA, Daly JM (2001) The influence of restricted calorie intake on peritoneal macrophage function. Nutrition 17(1):41–45

    CAS  PubMed  Google Scholar 

  23. Suskind RM, Tontisirin K, Nestlé S (2001) Nutrition, immunity, and infection in infants and children. Lippincott Williams & Wilkins

  24. Allori C, Agüero G, de Ruiz Holgado AP et al (2000) Gut mucosa morphology and microflora changes in malnourished mice after renutrition with milk and administration of Lactobacillus casei. J Food Prot 63(1):83–90

    CAS  PubMed  Google Scholar 

  25. Cano PG, Aguero G, Perdigon GA (2002) Adjuvant effects of Lactobacillus casei added to a renutrition diet in a malnourished mouse model. Biocell 26(1):35–48

    Google Scholar 

  26. Christensen HR, Frøkiær H, Pestka JJ (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168(1):171–178

    CAS  PubMed  Google Scholar 

  27. de LeBlanc AD, Chaves S, Carmuega E et al (2008) Effect of long-term continuous consumption of fermented milk containing probiotic bacteria on mucosal immunity and the activity of peritoneal macrophages. Immunobiology 213(2):97–108

    Google Scholar 

  28. Foligne B, Zoumpopoulou G, Dewulf J, Ben Younes A, Chareyre F, Sirard JC, Pot B, Grangette C (2007) A key role of dendritic cells in probiotic functionality. PLoS One 2(3):e313

    PubMed  PubMed Central  Google Scholar 

  29. Hart AL, Lammers K, Brigidi P, Vitali B, Rizzello F, Gionchetti P, Campieri M, Kamm MA, Knight SC, Stagg AJ (2004) Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53(11):1602–1609

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jain S, Yadav H, Sinha PR (2008) Stimulation of innate immunity by oral administration of dahi containing probiotic Lactobacillus casei in mice. J Med Food 11(4):652–656

    CAS  PubMed  Google Scholar 

  31. Kapila R, Kapila S, Kapasiya M, Pandey D, Dang A, Saliganti V (2012) Comparative evaluation of oral administration of probiotic lactobacilli-fermented milks on macrophage function. Probiotics Antimicrob Proteins 4(3):173–179

    CAS  PubMed  Google Scholar 

  32. Kapila R, Sebastian R, Varma D et al (2013) Comparison of innate immune activation after prolonged feeding of milk fermented with three species of lactobacilli. Microbiol Immunol 57(11):778–784

    CAS  PubMed  Google Scholar 

  33. Mohamadzadeh M, Olson S, Kalina WV, Ruthel G, Demmin GL, Warfield KL, Bavari S, Klaenhammer TR (2005) Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci U S A 102(8):2880–2885

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Paturi G, Phillips M, Kailasapathy K (2008) Effect of probiotic strains Lactobacillus acidophilus LAFTI L10 and Lactobacillus paracasei LAFTI L26 on systemic immune functions and bacterial translocation in mice. J Food Prot 71(4):796–801

    CAS  PubMed  Google Scholar 

  35. Singh TP, Kaur G, Malik RK, Schillinger U, Guigas C, Kapila S (2012) Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiotics Antimicrob Proteins 4(1):47–58

    CAS  PubMed  Google Scholar 

  36. Singh TP, Malik RK, Kaur G (2016) Cell surface proteins play an important role in probiotic activities of Lactobacillus reuteri. Nutrire 41(1):5

    Google Scholar 

  37. Singh TP, Kaur G, Kapila S et al (2017) Antagonistic activity of lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. Front Microbiol 8:486

    PubMed  PubMed Central  Google Scholar 

  38. Singh TP, Malik RK, Katkamwar SG, Kaur G (2015) Hypocholesterolemic effects of Lactobacillus reuteri LR6 in rats fed on high-cholesterol diet. Int J Food Sci Nutr 66(1):71–75

    CAS  PubMed  Google Scholar 

  39. Garg S, Singh TP, Reddi S, Malik RK, Kapila S (2017) Intervention of probiotic Lb. reuteri fermented milk as an adjuvant to combat protein energy malnourishment induced gut disturbances in albino mice. J Funct Foods 36:467–479

    CAS  Google Scholar 

  40. AOAC. Official method of analysis. Association of official agric chemists (1984) p. AOAC, Washington, DC, p 988

    Google Scholar 

  41. Kiernan JA (2008) Histological and histochemical methods theory and practice. (4th edn.), Scion, Bloxham

  42. Inaba K, Swiggard WJ, Steinman RM et al (2009) Isolation of dendritic cells. Curr Protoc Immunol 19:3–7

    Google Scholar 

  43. Hashizume T, Imayama S, Hori Y (1992) Scanning electron microscopic study on dendritic cells and fibroblasts in connective tissue. Microscopy 41(6):434–437

    CAS  Google Scholar 

  44. Rinttilä T, Kassinen A, Malinen E et al (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97(6):1166–1177

    PubMed  Google Scholar 

  45. Hu X, Wang T, Li W, Jin F, Wang L (2013) Effects of NS Lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet. Lipids Health Dis 12(1):67

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Abdulamir AS, Yoke TS, Nordin N et al (2010) Detection and quantification of probiotic bacteria using optimized DNA extraction, traditional and real-time PCR methods in complex microbial communities. AJB 9(10):1481–1492

    CAS  Google Scholar 

  47. De Azevedo JF, Hermes-Uliana C, Lima DP et al (2014) Probiotics protect the intestinal wall of morphological changes caused by malnutrition. An Acad Bras Ciênc 86(3):1303–1314

    PubMed  Google Scholar 

  48. Dock DB, Aguilar-Nascimento JE, Latorraca MQ (2003) Enhanced immunological response influenced by probiotics during the recovery of experimental malnutrition. Revista Brasileira de Nutrição Clínica 18:157–162

    Google Scholar 

  49. Dock DB, Aguilar-Nascimento JE, Latorraca MQ (2004) Probiotics enhance the recovery of gut atrophy in experimental malnutrition. Biocell 28(2):143–150

    PubMed  Google Scholar 

  50. Lima DP, Azevedo JFD, Hermes-Uliana C et al (2012) Probiotics prevent growth deficit of colon wall strata of malnourished rats post-lactation. An Acad Bras Ciênc 84(3):727–736

    PubMed  Google Scholar 

  51. Olusi SO, McFarlane H (1976) Effects of early protein-calorie malnutrition on the immune response. Pediatr Res 10(8):707–712

    CAS  PubMed  Google Scholar 

  52. Faulk WP, Paes RP, Marigo C (1976) The immunological system in health and malnutrition. Proc Nutr Soc 35(3):253–261

    CAS  PubMed  Google Scholar 

  53. Chandra RK (1997) Nutrition and the immune system: an introduction. Am J Clin Nutr 66(2):460S–463S

    CAS  PubMed  Google Scholar 

  54. Kemgang TS, Kapila S, Shanmugam VP, Kapila R (2014) Cross-talk between probiotic lactobacilli and host immune system. J Appl Microbiol 117(2):303–319

    CAS  PubMed  Google Scholar 

  55. Berman SH, Eichelsdoerfer P, Yim D, Elmer GW, Wenner CA (2006) Daily ingestion of a nutritional probiotic supplement enhances innate immune function in healthy adults. Nutr Res 26(9):454–459

    CAS  Google Scholar 

  56. Galdeano CM, Perdigon G (2006) The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 13(2):219–226

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ha CL, Woodward B (1997) Reduction in the quantity of the polymeric immunoglobulin receptor is sufficient to account for the low concentration of intestinal secretory immunoglobulin a in a weanling mouse model of wasting protein-energy malnutrition. J Nutr 127(3):427–435

    CAS  PubMed  Google Scholar 

  58. Mizumachi K, Aoki R, Ohmori H, Saeki M, Kawashima T (2009) Effect of fermented liquid diet prepared with Lactobacillus plantarum LQ80 on the immune response in weaning pigs. Animal 3(5):670–676

    CAS  PubMed  Google Scholar 

  59. Ohland CL, MacNaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298(6):G807–G819

    CAS  PubMed  Google Scholar 

  60. Paturi G, Phillips M, Jones M et al (2007) Immune enhancing effects of Lactobacillus acidophilus LAFTI L10 and Lactobacillus paracasei LAFTI L26 in mice. Int J Food Microbiol 115(1):115–118

    CAS  PubMed  Google Scholar 

  61. Rytter MJ, Kolte L, Briend A et al (2014) The immune system in children with malnutrition—a systematic review. PLoS One 9(8):e105017

    PubMed  PubMed Central  Google Scholar 

  62. Watson RR, McMurray DN, Martin P et al (1985) Effect of age, malnutrition and renutrition on free secretory component and IgA in secretions. Am J Clin Nutr 42(2):281–288

    CAS  PubMed  Google Scholar 

  63. Welsh FK, Farmery SM, MacLennan K et al (1998) Gut barrier function in malnourished patients. Gut 42(3):396–401

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Afacan NJ, Fjell CD, Hancock RE (2012) A systems biology approach to nutritional immunology–focus on innate immunity. Mol Asp Med 33(1):14–25

    CAS  Google Scholar 

  65. Marranzino G, Villena J, Salva S, Alvarez S (2012) Stimulation of macrophages by immunobiotic Lactobacillus strains: influence beyond the intestinal tract. Microbiol Immunol 56(11):771–781

    CAS  PubMed  Google Scholar 

  66. Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21(1):685–711

    CAS  PubMed  Google Scholar 

  67. Abe M, Akbar F, Matsuura B, Horiike N, Onji M (2003) Defective antigen-presenting capacity of murine dendritic cells during starvation. Nutrition 19(3):265–269

    CAS  PubMed  Google Scholar 

  68. Tsai YT, Cheng PC, Fan CK, Pan TM (2008) Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp. paracasei NTU 101. Int J Food Microbiol 128(2):219–225

    CAS  PubMed  Google Scholar 

  69. Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7(1):445–480

    CAS  PubMed  Google Scholar 

  70. Damoiseaux JG, Yagita H, Okumura K et al (1998) Costimulatory molecules CD80 and CD86 in the rat; tissue distribution and expression by antigen-presenting cells. J Leukoc Biol 64(6):803–809

    CAS  PubMed  Google Scholar 

  71. Cai S, Kandasamy M, Rahmat JN et al (2016) Lactobacillus rhamnosus GG activation of dendritic cells and neutrophils depends on the dose and time of exposure. J Immunol Res 2016:740–760

    Google Scholar 

  72. Xing F, Wang J, Hu M, Yu Y, Chen G, Liu J (2011) Comparison of immature and mature bone marrow-derived dendritic cells by atomic force microscopy. Nanoscale Res Lett 6(1):455

    PubMed  PubMed Central  Google Scholar 

  73. Dock-Nascimento DB, Junqueira K, Aguilar-Nascimento JE (2007) Rapid restoration of colonic goblet cells induced by a hydrolyzed diet containing probiotics in experimental malnutrition. Acta Cir Bras 22:72–76

    PubMed  Google Scholar 

  74. de LeBlanc ADM, LeBlanc JG (2014) Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications. World J Gastroenterol 20(33):16518–16528

    PubMed  PubMed Central  Google Scholar 

  75. Gareau MG, Sherman PM, Walker WA (2010) Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7(9):503–514

    PubMed  PubMed Central  Google Scholar 

  76. Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol 6(1):39–51

    CAS  Google Scholar 

  77. Kootte RS, Vrieze A, Holleman F, Dallinga-Thie GM, Zoetendal EG, de Vos WM, Groen AK, Hoekstra JBL, Stroes ES, Nieuwdorp M (2012) The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab 14(2):112–120

    CAS  PubMed  Google Scholar 

  78. Sanz Y (2011) Gut microbiota and probiotics in maternal and infant health. The Am J Clin Nutr 94(6):2000S–2005S

    CAS  PubMed  Google Scholar 

  79. Scaldaferri F, Gerardi V, Lopetuso LR, del Zompo F, Mangiola F, Boškoski I, Bruno G, Petito V, Laterza L, Cammarota G, Gaetani E, Sgambato A, Gasbarrini A (2013) Gut microbial flora, prebiotics, and probiotics in IBD: their current usage and utility. Biomed Res Int 2013 (Article ID 435268:1–9

    Google Scholar 

  80. Walsh CJ, Guinane CM, O’Toole PW et al (2014) Beneficial modulation of the gut microbiota. FEBS Letts 588(22):4120–4130

    CAS  Google Scholar 

  81. Wang S, Zhu H, Lu C, Kang Z, Luo Y, Feng L, Lu X (2012) Fermented milk supplemented with probiotics and prebiotics can effectively alter the intestinal microbiota and immunity of host animals. J Dairy Sci 95(9):4813–4822

    CAS  PubMed  Google Scholar 

  82. Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J, Hornova M, Srutkova D, Hudcovic T, Ridl J, Tlaskalova-Hogenova H (2011) Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One 6(11):e27961

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Humen MA, De Antoni GL, Benyacoub J et al (2005) Lactobacillus johnsonii La1 antagonizes Giardia intestinalis in vivo. Infect Immun 73(2):1265–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ren ZG, Liu H, Jiang JW, Jiang L, Chen H, Xie HY, Zhou L, Zheng SS (2011) Protective effect of probiotics on intestinal barrier function in malnourished rats after liver transplantation. HBPD Int 10(5):489–496

    CAS  PubMed  Google Scholar 

  85. Shukla G, Devi P, Sehgal R (2008) Effect of Lactobacillus casei as a probiotic on modulation of giardiasis. Dig Dis Sci 53(10):2671–2679

    PubMed  Google Scholar 

  86. Shukla G, Kaur T, Sehgal R et al (2010) Protective potential of L. acidophilus in murine giardiasis. Open Med 5(4):456–463

    Google Scholar 

  87. Shukla G, Sidhu RK (2011) Lactobacillus casei as a probiotic in malnourished Giardia lamblia-infected mice: a biochemical and histopathological study. Can J Microbiol 57(2):127–135

    CAS  PubMed  Google Scholar 

  88. Villena J, Racedo S, Agüero G, Alvarez S (2006) Yoghurt accelerates the recovery of defence mechanisms against Streptococcus pneumoniae in protein-malnourished mice. Br J Nutr 95(3):591–602

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Suman Kapila, Dr. Sachinandan De, and Dr. S. K. Tomar for the technical assistance in their respective laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheenam Garg.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S., Singh, T.P. & Malik, R.K. In Vivo Implications of Potential Probiotic Lactobacillus reuteri LR6 on the Gut and Immunological Parameters as an Adjuvant Against Protein Energy Malnutrition. Probiotics & Antimicro. Prot. 12, 517–534 (2020). https://doi.org/10.1007/s12602-019-09563-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09563-4

Keywords

Navigation