Skip to main content

Advertisement

Log in

Probiotic Lactobacillus johnsonii BS15 Promotes Growth Performance, Intestinal Immunity, and Gut Microbiota in Piglets

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Numerous studies have investigated the beneficial effects of Lactobacillus johnsonii strain BS15 on mice and broilers. This study aimed to understand the growth-promoting effects of BS15 on piglets. We determined the effects of L. johnsonii BS15 and a commercial probiotic strain, Bacillus subtilis JS01. Seventy-two suckling piglets (1 ± 2-day-old) were divided into three groups and fed with diets supplemented with 1 × 106 colony-forming units (cfu) BS15 per gram of feed (BS15 group); 1 × 106 cfu JS01 per gram of feed (JS01 group); or de Man, Rogosa, and Sharpe liquid medium (control group) 35 days. Compared with JS01, BS15 significantly improved the daily weight gain and diarrhea index of the piglets. The BS15 group had higher fecal sIgA levels, whereas the JS01 group had high fecal sIgA levels only after 35 days of treatment. Additionally, BS15 altered T cell subsets in peripheral blood by significantly increasing the CD3+CD4+ T cell percentage and CD3+CD4+/CD3+CD8+ ratio and decreasing the CD3+CD8+ T cell percentage. Moreover, BS15 exerted better beneficial effects on fecal microbiota than JS01. Specifically, the BS15 group had markedly increased Clostridium, Peptococcus, and Lactobacillus populations on days 7 and 21 of treatment and reduced Escherichia coli populations on day 35 of treatment. These findings indicated that BS15 can be applied as a probiotic that promotes growth performance and controls diarrhea in piglets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van IF, Rood JI, Moore RJ, Titball RW (2009) Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol 17(1):32–36. https://doi.org/10.1016/j.tim.2008.09.005

    Article  CAS  Google Scholar 

  2. Unno T, Kim JM, Guevarra RB, Nguyen SG (2015) Effects of antibiotic growth promoter and characterization of ecological succession in Swine gut microbiota. J Microbiol Biotechnol 25(4):431–438

    Article  CAS  PubMed  Google Scholar 

  3. Dahiya JP, Wilkie DC, Van Kessel AG, Drew MD (2006) Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim Feed Sci Technol 129(1–2):60–88. https://doi.org/10.1016/j.anifeedsci.2005.12.003

    Article  Google Scholar 

  4. Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, Kuitunen M (2007) Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol 119(1):192–198. https://doi.org/10.1016/j.jaci.2006.09.009

    Article  CAS  PubMed  Google Scholar 

  5. Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, Desimone C, Song XY, Diehl AM (2003) Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 37(2):343–350. https://doi.org/10.1053/jhep.2003.50048

    Article  CAS  PubMed  Google Scholar 

  6. Reid G, Guarner F, Gibson G, Tompkins T, Gill H, Rowland I, Rastall B, Pot B, Sanders ME (2004) Discussion on toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 127(1):366–367. https://doi.org/10.1053/j.gastro.2004.05.052

    Article  PubMed  Google Scholar 

  7. Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, Rittich B, Kozakova H, Schabussova I (2015) Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS One 10(7):e0134050-1–e0134050-20. https://doi.org/10.1371/journal.pone.0134050

    Article  CAS  Google Scholar 

  8. Xin J, Zeng D, Wang H, Ni X, Yi D, Pan K, Jing B (2014) Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Appl Microbiol Biotechnol 98(15):6817–6829. https://doi.org/10.1007/s00253-014-5752-1

    Article  CAS  PubMed  Google Scholar 

  9. Liu C, Zhu Q, Chang J, Yin Q, Song A, Li Z, Wang E, Lu F (2017) Effects of Lactobacillus casei and Enterococcus faecalis on growth performance, immune function and gut microbiota of suckling piglets. Arch Anim Nutr 71(2):120–133. https://doi.org/10.1080/1745039x.2017.1283824

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Ni X, Qing X, Zeng D, Luo M, Liu L, Li G, Pan K, Jing B (2017) Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers. Front Microbiol 8:1073. https://doi.org/10.3389/fmicb.2017.01073

    Article  PubMed  PubMed Central  Google Scholar 

  11. Qing X, Zeng D, Wang H, Ni X, Liu L, Lai J, Khalique A, Pan K, Jing B (2017) Preventing subclinical necrotic enteritis through Lactobacillus johnsonii BS15 by ameliorating lipid metabolism and intestinal microflora in broiler chickens. AMB Express 7:139-1–139-12. https://doi.org/10.1186/s13568-017-0439-5

    Article  CAS  Google Scholar 

  12. Wang H, Ni X, Liu L, Zeng D, Lai J, Qing X, Li G, Pan K, Jing B (2017) Controlling of growth performance, lipid deposits and fatty acid composition of chicken meat through a probiotic, Lactobacillus johnsonii during subclinical Clostridium perfringens infection. Lipids Health Dis 16:38-1–38-10. https://doi.org/10.1186/s12944-017-0408-7

    Article  CAS  Google Scholar 

  13. Alonso L, Fontecha J, Cuesta P (2016) Combined effect of Lactobacillus acidophilus and beta-cyclodextrin on serum cholesterol in pigs. Br J Nutr 115(1):1–5. https://doi.org/10.1017/s0007114515003736

    Article  CAS  PubMed  Google Scholar 

  14. Lee JH, Chae JP, Lee JY, Lim JS, Kim GB, Ham JS, Chun J, Kang DK (2011) Genome sequence of Lactobacillus johnsonii PF01, isolated from piglet feces. J Bacteriol 193(18):5030–5031. https://doi.org/10.1128/jb.05640-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang M, Pan L, Zhou P, Lv J, Zhang Z, Wang Y, Zhang Y (2015) Protection against foot-and-mouth disease virus in guinea pigs via oral administration of recombinant Lactobacillus plantarum expressing VP1. PLoS One 10(12):e0143750-1–e0143750-18. https://doi.org/10.1371/journal.pone.0143750

    Article  CAS  Google Scholar 

  16. Yang Y, Galle S, Le MH, Zijlstra RT, Ganzle MG (2015) Feed fermentation with reuteran- and levan-producing Lactobacillus reuteri reduces colonization of weanling pigs by enterotoxigenic Escherichia coli. Appl Environ Microbiol 81(17):5743–5752. https://doi.org/10.1128/aem.01525-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang KM, Jiang ZY, Zheng CT, Wang L, Yang XF (2014) Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Sci 92(4):1496–1503. https://doi.org/10.2527/jas.2013-6619

    Article  CAS  PubMed  Google Scholar 

  18. Missottena JAM, Goris J, Michiels bJ, Van Coillie E, Herman L, De Smet S, Dierick NA, Heyndrickx M (2009) Screening of isolated lactic acid bacteria as potential beneficial strains for fermented liquid pig feed production. Anim Feed Sci Technol 150:122–138. https://doi.org/10.1016/j.anifeedsci.2008.08.002

    Article  CAS  Google Scholar 

  19. Chiang ML, Chen HC, Chen KN, Lin YC, Lin YT, Chen MJ (2015) Optimizing production of two potential probiotic lactobacilli strains isolated from piglet feces as feed additives for weaned piglets. J Anim Sci 28(8):1163–1170. https://doi.org/10.5713/ajas.14.0780

    Article  Google Scholar 

  20. Council N (1999) Nutrient requirements of swine: 10th revised edition

  21. Shu Q, Qu F, Gill HS (2001) Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J Pediatr Gastroenterol Nutr 33(2):171–177

    Article  CAS  PubMed  Google Scholar 

  22. Lohse L, Nielsen J, Eriksen L (2006) Long-term treatment of pigs with low doses of monoclonal antibodies against porcine CD4 and CD8 antigens. Apmis 114(1):23–31. https://doi.org/10.1111/j.1600-0463.2006.apm_301.x

    Article  CAS  PubMed  Google Scholar 

  23. Wang HS, Ni XQ, Qing XD, Liu L, Lai J, Khalique A, Li GY, Pan KC, Jing B, Zeng D (2017) Probiotic enhanced intestinal immunity in broilers against subclinical necrotic enteritis. Front Immunol 8:1592-1–1592-14. https://doi.org/10.3389/fimmu.2017.01592

    Article  CAS  Google Scholar 

  24. Zuckermann FA, Husmann RJ (1996) Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 87(3):500–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jonasson R, Johannisson A, Jacobson M, Fellstrom C, Jensen-Waern M (2004) Differences in lymphocyte subpopulations and cell counts before and after experimentally induced swine dysentery. J Med Microbiol 53(Pt 4):267–272. https://doi.org/10.1099/jmm.0.05359-0

    Article  PubMed  Google Scholar 

  26. Jones DH, McBride BW, Thornton C, O’Hagan DT, Robinson A, Farrar GH (1996) Orally administered microencapsulated Bordetella pertussis fimbriae protect mice from B. pertussis respiratory infection. Infect Immun 64(2):489–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peters IR, Calvert EL, Hall EJ, Day MJ (2004) Measurement of immunoglobulin concentrations in the feces of healthy dogs. Clin Diagn Lab Immunol 11(5):841–848. https://doi.org/10.1128/CDLI.11.5.841-848.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Collins CH, Lyne PM, Grange JM (1989) Microbiological methods. Oxford, UK, pp 127–129

  29. Bhushan B, Tomar SK, Mandal S (2016) Phenotypic and genotypic screening of human-originated lactobacilli for vitamin B12 production potential: process validation by micro-assay and UFLC. Appl Microbiol Biotechnol 100(15):6791–6803. https://doi.org/10.1007/s00253-016-7639-9

    Article  CAS  PubMed  Google Scholar 

  30. Plant L, Conway P (2001) Association of Lactobacillus spp. with peyer’s patches in mice. Clin Diagn Lab Immunol 8(2):320–324. https://doi.org/10.1128/cdli.8.2.320-324.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turpin W, Humblot C, Thomas M, Guyot JP (2010) Lactobacilli as multifaceted probiotics with poorly disclosed molecular mechanisms. Int J Food Microbiol 143(3):87–102. https://doi.org/10.1016/j.ijfoodmicro.2010.07.032

    Article  CAS  PubMed  Google Scholar 

  32. Chu GM, Lee SJ, Jeong HS, Lee SS (2011) Efficacy of probiotics from anaerobic microflora with prebiotics on growth performance and noxious gas emission in growing pigs. Anim Sci J 82(2):282–290. https://doi.org/10.1111/j.1740-0929.2010.00828.x

    Article  PubMed  Google Scholar 

  33. De Angelis M, Siragusa S, Berloco M, Caputo L, Settanni L, Alfonsi G, Amerio M, Grandi A, Ragni A, Gobbetti M (2006) Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Res Microbiol 157(8):792–801. https://doi.org/10.1016/j.resmic.2006.05.003

    Article  PubMed  Google Scholar 

  34. Lan RX, Lee SI, Kim IH (2016) Effects of multistrain probiotics on growth performance, nutrient digestibility, blood profiles, faecal microbial shedding, faecal score and noxious gas emission in weaning pigs. J Anim Physiol Anim Nutr 100(6):1130–1138. https://doi.org/10.1111/jpn.12501

    Article  CAS  Google Scholar 

  35. Abe F, Ishibashi N, Shimamura S (1995) Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J Dairy Sci 78(12):2838–2846. https://doi.org/10.3168/jds.S0022-0302(95)76914-4

    Article  CAS  PubMed  Google Scholar 

  36. Fairbrother JM, Nadeau É, Gyles CL (2005) Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 6(01):17–39. https://doi.org/10.1079/ahr2005105

    Article  CAS  PubMed  Google Scholar 

  37. Mcleese JM, Tremblay ML, Patience JF, Christison GI (1992) Water intake patterns in the weanling pig: effect of water quality, antibiotics and probiotics. Anim Sci J 54(54):135–142

    Article  Google Scholar 

  38. Leser TD, Knarreborg A, Worm J (2008) Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J Appl Microbiol 104(4):1025–1033. https://doi.org/10.1111/j.1365-2672.2007.03633.x

    Article  CAS  PubMed  Google Scholar 

  39. Fan G, Chang J, Yin Q, Wang X, Dang X (2015) Effects of probiotics, oligosaccharides, and berberine combinationson growth performance of pigs. Turk J Vet Anim Sci 39(6):637–642

    Article  CAS  Google Scholar 

  40. Robertson G, Leclercq I, Farrell GC (2001) II. Cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver 281(5):G1135–G11G9

    Article  CAS  Google Scholar 

  41. Yuan SB, Chen DW, Zhang KY, Yu B (2007) Effects of oxidative stress on growth performance, nutrient digestibilities and activities of antioxidative enzymes of weanling pigs. J Anim Sci 20(10):1600–1605

    CAS  Google Scholar 

  42. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128. https://doi.org/10.1016/0891-5849(91)90192-6

    Article  CAS  PubMed  Google Scholar 

  43. Wagner BA, Buettner GR, Burns CP (1994) Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry 33(15):4449–4453

    Article  CAS  PubMed  Google Scholar 

  44. Victor VM, De la Fuente M (2002) N-acetylcysteine improves in vitro the function of macrophages from mice with endotoxininduced oxidative stress. Free Radic Res 36(1):33–45. https://doi.org/10.1080/10715760210160

    Article  CAS  PubMed  Google Scholar 

  45. De La Fuente M (2002) Effects of antioxidants on immunesystem ageing. Eur J Clin Nutr 56(3):s5–s8. https://doi.org/10.1038/sj.ejcn.1601476

    Article  CAS  PubMed  Google Scholar 

  46. Knight JA (2000) Review: free radicals, antioxidants and immune system. Ann Clin Lab Sci 30(2):145–158. https://doi.org/10.1309/EGX2-199E-GJKA-H9M4

    Article  CAS  PubMed  Google Scholar 

  47. Brisbin JT, Zhou H, Gong J, Sabour P, Akbari MR, Haghighi HR, Yu H, Clarke A, Sarson AJ, Sharif S (2008) Gene expression profiling of chicken lymphoid cells after treatment with Lactobacillus acidophilus cellular components. Dev Comp Immunol 32(5):563–574. https://doi.org/10.1016/j.dci.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  48. Wilson AD, Stokes CR, Bourne FJ (1986) Morphology and functional characteristics of isolated porcine intraepithelial lymphocytes. Immunology 59(1):109–113

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stüve O, Marra CM, Bar-Or A, Niino M, Cravens PD, Cepok S, Frohman EM, Phillips JT, Arendt G, Jerome KR, Cook L, Grand’Maison F, Hemmer B, Monson NL, Racke MK (2006) Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch Neurol 63(10):1383–1387. https://doi.org/10.1001/archneur.63.10.1383

    Article  PubMed  Google Scholar 

  50. Salzman NH (2014) The role of the microbiome in immune cell development. Ann Allergy Asthma Immunol 113(6):593–598. https://doi.org/10.1016/j.anai.2014.08.020

    Article  PubMed  Google Scholar 

  51. Hernández J, Garfias Y, Nieto A, Mercado C, Montaño LF, Zenteno E (2001) Comparative evaluation of the CD4+CD8+ and CD4+CD8- lymphocytes in the immune response to porcine rubulavirus. Vet Immunol Immunopathol 79(3–4):249–259

    Article  PubMed  Google Scholar 

  52. Kick AR, Tompkins MB, Flowers WL, Whisnant CS, Almond GW (2012) Effeets of stress associated with weaning on the adaptive immune system in pigs. J Anim Sci 90:649–656. https://doi.org/10.2527/jas.2010-3470

    Article  CAS  PubMed  Google Scholar 

  53. Tuchscherer M, Kanitz E, Puppe B, TuchschTerer A, Viergutz T (2009) Changes in endocrine and immune responses of neonatal pigs exposed to a psychosocial stressor. Res Vet Sci 87:380–388. https://doi.org/10.1016/j.rvsc.2009.04.010

    Article  CAS  PubMed  Google Scholar 

  54. Siggers RH, Siggers J, Boye M, Thymann T, Mølbak L, Leser T, Jensen BB, Sangild PT (2008) Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs. J Nutr 138(8):1437–1444. https://doi.org/10.1093/jn/138.8.1437

    Article  CAS  PubMed  Google Scholar 

  55. Nollet H, Deprez P, Van Driessche E, Muylle E (1999) Protection of just weaned pigs against infection with F18+ Escherichia coli by non-immune plasma powder. Vet Microbiol 65(1):37–45

    Article  CAS  PubMed  Google Scholar 

  56. Mori K, Ito T, Miyamoto H, Ozawa M, Wada S, Kumagai Y, Matsumoto J, Naito R, Nakamura S, Kodama H, Kurihara Y (2011) Oral administration of multispecies microbial supplements to sows influences the composition of gut microbiota and fecal organic acids in their post-weaned piglets. J Biosci Bioeng 112(2):145–150. https://doi.org/10.1016/j.jbiosc.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  57. Wang JQ, Yin FG, Zhu C, Yu H, Niven SJ, de Lange CFM, Gong J (2012) Evaluation of probiotic bacteria for their effects on the growth performance and intestinal microbiota of newly-weaned pigs fed fermented high-moisture maize. Livest Sci 145(1):79–86. https://doi.org/10.1016/j.livsci.2011.12.024

    Article  Google Scholar 

  58. Lindner C, Wahl B, Fohse L, Suerbaum S, Macpherson AJ, Prinz I, Pabst O (2012) Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J Exp Med 209(2):365–377. https://doi.org/10.1084/jem.20111980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lammers A, Wieland WH, Kruijt L, Jansma A, Straetemans T, Schots A, den Hartog G, Parmentier HK (2010) Successive immunoglobulin and cytokine expression in the small intestine of juvenile chicken. Dev Comp Immunol 34(12):1254–1262. https://doi.org/10.1016/j.dci.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  60. Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, Degnan PH, Hu J, Peter I, Zhang W, Ruggiero E, Cho JH, Goodman AL, Flavell RA (2014) Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158(5):1000–1010. https://doi.org/10.1016/j.cell.2014.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Van LA, Kroese FG, Visser A, Nelis GF, Westerveld BD, Jansen PL, Hunter JO (2004) Immunoglobulin coating of faecal bacteria in inflammatory bowel disease. Eur J Gastroenterol Hepatol 16(7):669–674

    Article  Google Scholar 

  62. Bakker-Zierikzee AM, van Tol EAF, Kroes H, Alles MS, Kok FJ, Bindels JG (2006) Faecal sIgA secretion in infants fed on pre- or probiotic infant formula. Pediatr Allergy Immunol 17:134–140. https://doi.org/10.1111/j.1399-3038.2005.00370.x

    Article  CAS  PubMed  Google Scholar 

  63. Curtis J, Bourne FJ (1971) Immunoglobulin quantitation in sow serum, colostrum and milk and the serum of young pigs. Biochim Biophys Acta 236(1):319–332

    Article  CAS  PubMed  Google Scholar 

  64. Kabeerdoss J, Devi RS, Mary RR, Prabhavathi D, Vidya R, Mechenro J, Mahendri NV, Pugazhendhi S, Ramakrishna BS (2011) Effect of yoghurt containing Bifidobacterium lactis Bb12(R) on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers. Nutr J 10:138-1–138-4. https://doi.org/10.1186/1475-2891-10-138

    Article  Google Scholar 

Download references

Funding

This study was supported by the International Cooperative Project of Science and Technology Bureau of Sichuan Province (2018HH0103), as well as the Science and Technology Support Project of Science and Technology Bureau of Sichuan Province (2014FZ0076). Both funding bodies provided funding support for the animal purchase and index determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Ni.

Ethics declarations

All animal experiments were performed in accordance with the guidelines for the care and use of laboratory animals approved by the Institutional Animal Care and Use Committee of Sichuan Agricultural University (approval number, SYXKchuan2014-187).

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, J., Zeng, D., Wang, H. et al. Probiotic Lactobacillus johnsonii BS15 Promotes Growth Performance, Intestinal Immunity, and Gut Microbiota in Piglets. Probiotics & Antimicro. Prot. 12, 184–193 (2020). https://doi.org/10.1007/s12602-018-9511-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9511-y

Keywords

Navigation