Skip to main content

Advertisement

Log in

Influence of Proline Substitution on the Bioactivity of Mammalian-Derived Antimicrobial Peptide NK-2

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Multidrug-resistant bacteria are emerging as a global threat, making the search for alternative compounds urgent. Antimicrobial peptides (AMPs) became a promising hotspot due to their distinct action mechanism and possibility to be used as an alternative or complement to traditional antibiotics. However, gaining a better understanding about the relationship between antimicrobial peptides structure and its bioactivity is crucial for the development of next generation of antimicrobial agents. NK-2, derived from mammalian protein NK-lysin, has potent antitumor and bactericidal abilities. As proline was considered to be an effective α-helix breaker due to its restricted conformation, to better comprehend the effects of proline in the structure-activity relationship of NK-2, we constructed two NK-2 analogs. We examined the biological activities of NK-2 and its proline substitution analogs and analyzed the resulting conformational changes. Our results showed that introducing proline into the primary sequence of NK-2 significantly decreased the antitumor, antibacterial, and cytotoxic effects, as well as DNA binding activity by changing the α-helix content. However, α-helical content was not the only determining factor, the position of proline inserted was also critical. This study will allow for clearer insight into the role of proline in structure and bioactivity of NK-2 and provide a foundation for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.  4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMPs:

Antimicrobial peptides

CD:

Circular dichroism.

F-moc:

N-9-fluorenylmethoxycarbonyl

RBC:

Red blood cell.

MIC:

Minimum inhibitory concentration

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide

TFE:

2,2,2-Trifluoroethanol

References

  1. Lima TB, Pinto MFS, Ribeiro SM, de Lima LA, Viana JC, Junior NG, Candido ES, Dias SC, Franco OL (2013) Bacterial resistance mechanism: what proteomics can elucidate. FASEB J 27(4):1291–1303. https://doi.org/10.1096/fj.12-221127

    Article  CAS  Google Scholar 

  2. Grundmann H, Klugman KP, Walsh T, Ramon-Pardo P, Sigauque B, Khan W, Laxminarayan R, Heddini A, Stelling J (2011) A framework for global surveillance of antibiotic resistance. Drug Resist Updat 14(2):79–87. https://doi.org/10.1016/j.drup.2011.02.007

    Article  Google Scholar 

  3. David MZ, Dryden M, Gottlieb T, Tattevin P, Gould IM (2017) Recently approved antibacterials for methicillin-resistant Staphylococcus Aureus (MRSA) and other gram-positive pathogens: the shock of the new. Int J Antimicrob Agents 50(3):303–307. https://doi.org/10.1016/j.ijantimicag.2017.05.006

    Article  CAS  Google Scholar 

  4. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  Google Scholar 

  5. Mangoni M (2011) Host-defense peptides: from biology to therapeutic strategies. Cell Mol Life Sci 68(13):2157–2159. https://doi.org/10.1007/s00018-011-0709-3

    Article  CAS  Google Scholar 

  6. Wang K, Dang W, Yan J, Chen R, Liu X, Yan W, Zhang B, Xie J, Zhang J, Wang R (2013) Membrane perturbation action mode and structure-activity relationships of Protonectin, a novel antimicrobial peptide from the venom of the neotropical social wasp Agelaia pallipes pallipes. Antimicrob Agents Chemother 57(10):4632–4639. https://doi.org/10.1128/aac.02311-12

    Article  CAS  Google Scholar 

  7. Murray B, Pearson CS, Aranjo A, Cherupalla D, Belfort G (2016) Mechanism of four de novo designed antimicrobial peptides. J Biol Chem 291(49):25706–25715. https://doi.org/10.1074/jbc.M116.733816

    Article  CAS  Google Scholar 

  8. Trimble MJ, Mlynárčik P, Kolář M, Hancock REW (2016) Polymyxin: alternative mechanisms of action and resistance. Cold Spring Harb Perspect Med 6(10). https://doi.org/10.1101/cshperspect.a025288

  9. Biondi B, Casciaro B, Di Grazia A, Cappiello F, Luca V, Crisma M, Mangoni ML (2017) Effects of Aib residues insertion on the structural–functional properties of the frog skin-derived peptide esculentin-1a(1–21)NH2. Amino Acids 49(1):139–150. https://doi.org/10.1007/s00726-016-2341-x

    Article  CAS  Google Scholar 

  10. Peschel A, Sahl H-G (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4(7):529–536

    Article  CAS  Google Scholar 

  11. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511. https://doi.org/10.1128/cmr.00056-05

    Article  CAS  Google Scholar 

  12. Wiradharma N, Sng MY, Khan M, Ong ZY, Yang YY (2013) Rationally designed alpha-helical broad-spectrum antimicrobial peptides with idealized facial amphiphilicity. Macromol Rapid Commun 34(1):74–80. https://doi.org/10.1002/marc.201200534

    Article  CAS  Google Scholar 

  13. Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides—using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta Biomembr 1758(9):1436–1449. https://doi.org/10.1016/j.bbamem.2006.03.021

    Article  CAS  Google Scholar 

  14. Casciaro B, Cappiello F, Cacciafesta M, Mangoni ML (2017) Promising approaches to optimize the biological properties of the antimicrobial peptide Esculentin-1a(1-21)NH2: amino acids substitution and conjugation to nanoparticles. Front Chem 5:26. https://doi.org/10.3389/fchem.2017.00026

    Article  Google Scholar 

  15. Lee JK, Gopal R, Park S-C, Ko HS, Kim Y, Hahm K-S, Park Y (2013) A Proline-hinge alters the characteristics of the amphipathic α-helical AMPs. PLoS One 8(7):e67597. https://doi.org/10.1371/journal.pone.0067597

    Article  CAS  Google Scholar 

  16. Schimmel PR, Flory PJ (1967) Conformational energy and configurational statistics of poly-L-proline. Proc Natl Acad Sci U S A 58(1):52–59

    Article  CAS  Google Scholar 

  17. Andersson M, Gunne H, Agerberth B, Boman A, Bergman T, Olsson B, Dagerlind Å, Wigzell H, Boman HG, Gudmundsson GH (1996) NK-lysin, structure and function of a novel effector molecule of porcine T and NK cells. Vet Immunol Immunopathol 54(1–4):123–126. https://doi.org/10.1016/S0165-2427(96)05677-2

    Article  CAS  Google Scholar 

  18. Schröder-Borm H, Bakalova R, Andrä J (2005) The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine. FEBS Lett 579(27):6128–6134. https://doi.org/10.1016/j.febslet.2005.09.084

    Article  Google Scholar 

  19. Yan JX, Wang KR, Chen R, Song JJ, Zhang BZ, Dang W, Zhang W, Wang R (2012) Membrane active antitumor activity of NK-18, a mammalian NK-lysin-derived cationic antimicrobial peptide. Biochimie 94(1):184–191. https://doi.org/10.1016/j.biochi.2011.10.005

    Article  CAS  Google Scholar 

  20. Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35(3):161–214

    Article  CAS  Google Scholar 

  21. Desgranges S, Le Prieult F, Daly A, Lydon J, Brennan M, Rai DK, Subasinghage AP, Hewage CM, Cryan S-A, Greene C, McElvaney NG, Smyth TP, Fitzgerald-Hughes D, Humphreys H, Devocelle M (2011) In vitro activities of synthetic host defense Propeptides processed by neutrophil Elastase against cystic fibrosis pathogens. Antimicrob Agents Chemother 55(5):2487–2489. https://doi.org/10.1128/aac.01384-10

    Article  CAS  Google Scholar 

  22. Institute CaLS (2012) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically—Ninth Edition: Approved Standard M07-A9

  23. Yan J, Wang K, Dang W, Chen R, Xie J, Zhang B, Song J, Wang R (2013) Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob Agents Chemother 57(1):220–228. https://doi.org/10.1128/aac.01619-12

    Article  CAS  Google Scholar 

  24. Pag U, Oedenkoven M, Papo N, Oren Z, Shai Y, Sahl H-G (2004) In vitro activity and mode of action of diastereomeric antimicrobial peptides against bacterial clinical isolates. J Antimicrob Chemother 53(2):230–239. https://doi.org/10.1093/jac/dkh083

    Article  CAS  Google Scholar 

  25. Beckloff N, Laube D, Castro T, Furgang D, Park S, Perlin D, Clements D, Tang H, Scott RW, Tew GN, Diamond G (2007) Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob Agents Chemother 51(11):4125–4132. https://doi.org/10.1128/aac.00208-07

    Article  CAS  Google Scholar 

  26. Rohl CA, Baldwin RL (1998) Deciphering rules of helix stability in peptides. Methods Enzymol 295:1–26

    Article  CAS  Google Scholar 

  27. Eisenberg D, McLachlan AD (1986) Solvation energy in protein folding and binding. Nature 319(6050):199–203

    Article  CAS  Google Scholar 

  28. Schiffer M, Edmundson AB (1967) Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J 7(2):121–135. https://doi.org/10.1016/s0006-3495(67)86579-2

    Article  CAS  Google Scholar 

  29. Mohamed MF, Hamed MI, Panitch A, Seleem MN (2014) Targeting methicillin-resistant Staphylococcus aureus with short salt-resistant synthetic peptides. Antimicrob Agents Chemother 58(7):4113–4122. https://doi.org/10.1128/aac.02578-14

    Article  Google Scholar 

  30. de Oca EPM (2013) Antimicrobial peptide elicitors: new hope for the post-antibiotic era. Innate Immun 19(3):227–241. https://doi.org/10.1177/1753425912460708

    Article  Google Scholar 

  31. Gabrielsen C, Brede DA, Nes IF, Diep DB (2014) Circular Bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol 80(22):6854–6862. https://doi.org/10.1128/aem.02284-14

    Article  Google Scholar 

  32. Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ (2014) Antimicrobial peptides: therapeutic potentials. Expert Rev Anti-Infect Ther 12(12):1477–1486. https://doi.org/10.1586/14787210.2014.976613

    Article  CAS  Google Scholar 

  33. Campos-Salinas J, Cavazzuti A, O'Valle F, Forte-Lago I, Caro M, Beverley SM, Delgado M, Gonzalez-Rey E (2014) Therapeutic efficacy of stable analogues of vasoactive intestinal peptide against pathogens. J Biol Chem. https://doi.org/10.1074/jbc.M114.560573

  34. Ong ZY, Wiradharma N, Yang YY (2014) Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev 78c:28–45. https://doi.org/10.1016/j.addr.2014.10.013

    Article  Google Scholar 

  35. Mangoni ML, Carotenuto A, Auriemma L, Saviello MR, Campiglia P, Gomez-Monterrey I, Malfi S, Marcellini L, Barra D, Novellino E, Grieco P (2011) Structure–activity relationship, conformational and biological studies of Temporin L analogues. J Med Chem 54(5):1298–1307. https://doi.org/10.1021/jm1012853

    Article  CAS  Google Scholar 

  36. Bobone S, Bocchinfuso G, Park Y, Palleschi A, Hahm KS, Stella L (2013) The importance of being kinked: role of pro residues in the selectivity of the helical antimicrobial peptide P5. J Pept Sci 19(12):758–769. https://doi.org/10.1002/psc.2574

    Article  CAS  Google Scholar 

  37. Bera S, Ghosh A, Sharma S, Debnath T, Giri B, Bhunia A (2015) Probing the role of Proline in the antimicrobial activity and lipopolysaccharide binding of indolicidin. J Colloid Interface Sci 452:148–159. https://doi.org/10.1016/j.jcis.2015.04.031

    Article  CAS  Google Scholar 

  38. Li SC, Goto NK, Williams KA, Deber CM (1996) Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proc Natl Acad Sci U S A 93(13):6676–6681

    Article  CAS  Google Scholar 

  39. Scocchi M, Tossi A, Gennaro R (2011) Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol Life Sci: CMLS 68(13):2317–2330. https://doi.org/10.1007/s00018-011-0721-7

    Article  CAS  Google Scholar 

  40. Andra J, Leippe M (1999) Candidacidal activity of shortened synthetic analogs of amoebapores and NK-lysin. Med Microbiol Immunol 188(3):117–124

    Article  CAS  Google Scholar 

  41. Hsu C-H, Chen C, Jou M-L, Lee AY-L, Lin Y-C, Yu Y-P, Huang W-T, Wu S-H (2005) Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33(13):4053–4064. https://doi.org/10.1093/nar/gki725

    Article  CAS  Google Scholar 

  42. Tang Y-L, Shi Y-H, Zhao W, Hao G, Le G-W (2009) Interaction of MDpep9, a novel antimicrobial peptide from Chinese traditional edible larvae of housefly, with Escherichia Coli genomic DNA. Food Chem 115(3):867–872. https://doi.org/10.1016/j.foodchem.2008.12.102

    Article  CAS  Google Scholar 

  43. MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218(2):397–412

    Article  CAS  Google Scholar 

  44. Song YM, Yang S-T, Lim SS, Kim Y, Hahm K-S, Kim JI, Shin SY (2004) Effects of l- or d-pro incorporation into hydrophobic or hydrophilic helix face of amphipathic α-helical model peptide on structure and cell selectivity. Biochem Biophys Res Commun 314(2):615–621. https://doi.org/10.1016/j.bbrc.2003.12.142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (nos. 81601351, 81573265), the Natural Science Foundation of Gansu Province (17JR5RA267), and the research funds with the approval of the Ethical Committee of the Faculty of The First Hospital of Lanzhou University, China (no. ldyyyn2015-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Liang, X., Liu, C. et al. Influence of Proline Substitution on the Bioactivity of Mammalian-Derived Antimicrobial Peptide NK-2. Probiotics & Antimicro. Prot. 10, 118–127 (2018). https://doi.org/10.1007/s12602-017-9335-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9335-1

Keywords

Navigation