Skip to main content
Log in

The Effects of Synbiotic Supplementation on Glucose Metabolism and Lipid Profiles in Patients with Diabetes: a Systematic Review and Meta-Analysis of Randomized Controlled Trials

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Although several studies have evaluated the effect of synbiotic intake on metabolic profiles in patients with diabetes, findings are inconsistent. This systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to summarize the evidence on the effect of synbiotic intake on metabolic profiles in patients with diabetes. The PubMed, EMBASE, Web of Science, and Cochrane Library databases were systematically searched. All RCTs published up to 12 November 2016 were included. Two review authors independently assessed study eligibility, extracted data, and evaluated risk of bias of included studies. Heterogeneity was measured with a Q test and with I 2 statistics. Data were pooled by using the fix or random-effect model based on the heterogeneity test results and expressed as standardized mean difference (SMD) with 95% confidence interval (CI). A total of seven randomized controlled trials were included. Synbiotic consumption significantly changed glucose metabolism, including fasting plasma glucose (FPG) (SMD = −0.29; 95% CI, −0.47, −0.10), insulin concentrations (SMD = −0.84; 95% CI, −1.61, −0.06), homeostasis model assessment of insulin resistance (HOMA-IR) (SMD = −0.80; 95% CI, −1.58, −0.03), homeostatic model assessment-B cell function (HOMA-B) (SMD = −0.36; 95% CI, −0.71, −0.01), quantitative insulin sensitivity check index (QUICKI) (SMD = 0.46; 95% CI, 0.09, 0.82), and significantly improved lipid profiles, such as triglycerides (SMD = −0.36; 95% CI, −0.55, −0.17), very low density lipoprotein-cholesterol (SMD = −0.31; 95% CI, −0.55, −0.08), and total cholesterol (SMD = −0.32; 95% CI, −0.67, −0.03), but had no effect on low density lipoprotein-cholesterol (SMD = −0.07; 95% CI, −0.58, 0.43) and high density lipoprotein-cholesterol concentrations (SMD = −0.25; 95% CI, −0.81, 0.31). Synbiotic may result in an improvement in FPG, insulin, HOMA-IR, HOMA-B, QUICKI, triglycerides, and total cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McGillicuddy FC, Roche HM (2012) Nutritional status, genetic susceptibility, and insulin resistance—important precedents to atherosclerosis. Mol Nutr Food Res 56:1173–1184. doi:10.1002/mnfr.201100785

    Article  CAS  PubMed  Google Scholar 

  2. Schubert CM, Rogers NL, Remsberg KE, Sun SS, Chumlea WC, Demerath EW, Czerwinski SA, Towne B, Siervogel RM (2006) Lipids, lipoproteins, lifestyle, adiposity and fat-free mass during middle age: the Fels Longitudinal Study. Int J Obes 30:251–260

    Article  CAS  Google Scholar 

  3. Moosheer SM, Waldschutz W, Itariu BK, Brath H, Stulnig TM (2014) A protein-enriched low glycemic index diet with omega-3 polyunsaturated fatty acid supplementation exerts beneficial effects on metabolic control in type 2 diabetes. Prim Care Diabetes 8:308–314. doi:10.1016/j.pcd.2014.02.004

    Article  PubMed  Google Scholar 

  4. Asemi Z, Hashemi T, Karamali M, Samimi M, Esmaillzadeh A (2013) Effects of vitamin D supplementation on glucose metabolism, lipid concentrations, inflammation, and oxidative stress in gestational diabetes: a double-blind randomized controlled clinical trial. Am J Clin Nutr 98:1425–1432. doi:10.3945/ajcn.113.072785

    Article  CAS  PubMed  Google Scholar 

  5. Gao D, Ning N, Wang C, Wang Y, Li Q, Meng Z, Liu Y, Li Q (2013) Dairy products consumption and risk of type 2 diabetes: systematic review and dose-response meta-analysis. PLoS One 8:e73965. doi:10.1371/journal.pone.0073965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66. doi:10.1007/10_2008_097

    Article  PubMed  Google Scholar 

  7. Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A (2016) Effects of Probiotics and Synbiotics on Obesity, Insulin Resistance Syndrome, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Review of Human Clinical Trials. Int J Mol Sci :17(6). doi:10.3390/ijms17060928.

  8. Shakeri H, Hadaegh H, Abedi F, Tajabadi-Ebrahimi M, Mazroii N, Ghandi Y, Asemi Z (2014) Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type-2 diabetes. Lipids 49:695–701. doi:10.1007/s11745-014-3901-z

    Article  CAS  PubMed  Google Scholar 

  9. Beserra BT, Fernandes R, do Rosario VA, Mocellin MC, Kuntz MG, Trindade EB (2015) A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clin Nutr 34:845–858. doi:10.1016/j.clnu.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  10. Ruan Y, Sun J, He J, Chen F, Chen R, Chen H (2015) Effect of probiotics on glycemic control: a systematic review and meta-analysis of randomized, controlled trials. PLoS One 10:e0132121. doi:10.1371/journal.pone.0132121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vitali B, Ndagijimana M, Maccaferri S, Biagi E, Guerzoni ME, Brigidi P (2012) An in vitro evaluation of the effect of probiotics and prebiotics on the metabolic profile of human microbiota. Anaerobe 18:386–391. doi:10.1016/j.anaerobe.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  12. Voltolini C, Battersby S, Etherington SL, Petraglia F, Norman JE, Jabbour HN (2012) A novel antiinflammatory role for the short-chain fatty acids in human labor. Endocrinology 153:395–403. doi:10.1210/en.2011-1457

    Article  CAS  PubMed  Google Scholar 

  13. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl 2):S1–S6. doi:10.1017/S0007114510003363

    Article  CAS  PubMed  Google Scholar 

  14. Ahmadi S, Jamilian M, Tajabadi-Ebrahimi M, Jafari P, Asemi Z (2016) The effects of synbiotic supplementation on markers of insulin metabolism and lipid profiles in gestational diabetes: a randomised, double-blind, placebo-controlled trial. Br J Nutr 116:1394–1401. doi:10.1017/S0007114516003457

    Article  CAS  PubMed  Google Scholar 

  15. Asemi Z, Khorrami-Rad A, Alizadeh SA, Shakeri H, Esmaillzadeh A (2014) Effects of synbiotic food consumption on metabolic status of diabetic patients: a double-blind randomized cross-over controlled clinical trial. Clin Nutr 33:198–203. doi:10.1016/j.clnu.2013.05.015

    Article  PubMed  Google Scholar 

  16. Asemi Z, Alizadeh SA, Ahmad K, Goli M, Esmaillzadeh A (2016) Effects of beta-carotene fortified synbiotic food on metabolic control of patients with type 2 diabetes mellitus: a double-blind randomized cross-over controlled clinical trial. Clin Nutr 35:819–825. doi:10.1016/j.clnu.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  17. Moroti C, Souza Magri LF, de Rezende CM, Cavallini DC, Sivieri K (2012) Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus. Lipids Health Dis 11:29. doi:10.1186/1476-511X-11-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tajabadi-Ebrahimi M, Sharifi N, Farrokhian A, Raygan F, Karamali F, Razzaghi R, Taheri S, Asemi Z (2017) A randomized controlled clinical trial investigating the effect of synbiotic administration on markers of insulin metabolism and lipid profiles in overweight type 2 diabetic patients with coronary heart disease. Exp Clin Endocrinol Diabetes 125:21–27. doi:10.1055/s-0042-105441

    Article  CAS  PubMed  Google Scholar 

  19. Tajadadi-Ebrahimi M, Bahmani F, Shakeri H, Hadaegh H, Hijijafari M, Abedi F, Asemi Z (2014) Effects of daily consumption of synbiotic bread on insulin metabolism and serum high-sensitivity C-reactive protein among diabetic patients: a double-blind, randomized, controlled clinical trial. Ann Nutr Metab 65:34–41. doi:10.1159/000365153

    Article  CAS  PubMed  Google Scholar 

  20. Gomes AC, Bueno AA, de Souza RG, Mota JF (2014) Gut microbiota, probiotics and diabetes. Nutr J 13:60. doi:10.1186/1475-2891-13-60

    Article  PubMed  PubMed Central  Google Scholar 

  21. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085. doi:10.1371/journal.pone.0009085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kasinska MA, Drzewoski J (2015) Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Med Wewn 125:803–813. doi:10.20452/pamw.3156

    Article  PubMed  Google Scholar 

  23. Samah S, Ramasamy K, Lim SM, Neoh CF (2016) Probiotics for the management of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract 118:172–182. doi:10.1016/j.diabres.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  24. Chapman CM, Gibson GR, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50:1–17. doi:10.1007/s00394-010-0166-z

    Article  CAS  PubMed  Google Scholar 

  25. Prudente S, Trischitta V (2015) The TRIB3 Q84R polymorphism, insulin resistance and related metabolic alterations. Biochem Soc Trans 43:1108–1111. doi:10.1042/BST20150115

    Article  CAS  PubMed  Google Scholar 

  26. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V (2012) Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition 28:539–543. doi:10.1016/j.nut.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  27. Amaretti A, di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A (2013) Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97:809–817. doi:10.1007/s00253-012-4241-7

    Article  CAS  PubMed  Google Scholar 

  28. Uskova MA, Kravchenko LV (2009) Antioxidant properties of lactic acid bacteria—probiotic and yogurt strains. Vopr Pitan 78:18–23

    CAS  PubMed  Google Scholar 

  29. Yadav H, Jain S, Sinha PR (2007) Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23:62–68

    Article  PubMed  Google Scholar 

  30. de Moreno de Leblanc A, Perdigon G (2010) The application of probiotic fermented milks in cancer and intestinal inflammation. Proc Nutr Soc 69:421–428. doi:10.1017/S002966511000159X

    Article  CAS  PubMed  Google Scholar 

  31. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deepak V, Ram Kumar Pandian S, Sivasubramaniam SD, Nellaiah H, Sundar K (2016) Optimization of anticancer exopolysaccharide production from probiotic Lactobacillus acidophilus by response surface methodology. Prep Biochem Biotechnol 46:288–297. doi:10.1080/10826068.2015.1031386

    Article  CAS  PubMed  Google Scholar 

  33. Dewulf EM, Cani PD, Neyrinck AM, Possemiers S, Van Holle A, Muccioli GG, Deldicque L, Bindels LB, Pachikian BD, Sohet FM, Mignolet E, Francaux M, Larondelle Y, Delzenne NM (2011) Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARgamma-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 22:712–722. doi:10.1016/j.jnutbio.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Xie J, Li Y, Dong S, Liu H, Chen J, Wang Y, Zhao S, Zhang Y, Zhang H (2016) Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure. Eur J Nutr 55:821–831. doi:10.1007/s00394-015-0904-3

    Article  CAS  PubMed  Google Scholar 

  35. Weitkunat K, Schumann S, Petzke KJ, Blaut M, Loh G, Klaus S (2015) Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. J Nutr Biochem 26:929–937. doi:10.1016/j.jnutbio.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  36. Cho YA, Kim J (2015) Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 94:e1714. doi:10.1097/MD.0000000000001714

    Article  Google Scholar 

  37. Shimizu M, Hashiguchi M, Shiga T, Tamura HO, Mochizuki M (2015) Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS One 10:e0139795. doi:10.1371/journal.pone.0139795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agerholm-Larsen L, Bell ML, Grunwald GK, Astrup A (2000) The effect of a probiotic milk product on plasma cholesterol: a meta-analysis of short-term intervention studies. Eur J Clin Nutr 54:856–860

    Article  CAS  PubMed  Google Scholar 

  39. Matsuoka H, Miura A, Hori K (2009) Symbiotic effects of a lipase-secreting bacterium, Burkholderia arboris SL1B1, and a glycerol-assimilating yeast, Candida cylindracea SL1B2, on triacylglycerol degradation. J Biosci Bioeng 107:401–408. doi:10.1016/j.jbiosc.2008

    Article  CAS  PubMed  Google Scholar 

  40. Yadav H, Lee JH, Lloyd J, Walter P, Rane SG (2013) Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288:25088–25097. doi:10.1074/jbc.M113.452516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klaver FA, van der Meer R (1993) The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microbiol 59:1120–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lye H-S, Rahmat-Ali GR, Liong M-T (2010) Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int Dairy J 20:169–175. doi:10.1016/j.idairyj.2009.10.003

    Article  CAS  Google Scholar 

  43. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. doi:10.1126/science.1208344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arboleya S, Ang L, Margolles A, Yiyuan L, Dongya Z, Liang X, Solís G, Fernández N, de Los Reyes-Gavilán CG, Gueimonde M (2012) Deep 16S rRNA metagenomics and quantitative PCR analyses of the premature infant fecal microbiota. Anaerobe 18:378–380. doi:10.1016/j.anaerobe.2012.04.013

    Article  CAS  PubMed  Google Scholar 

  46. Perez-Cobas AE, Artacho A, Knecht H, Ferrús ML, Friedrichs A, Ott SJ, Moya A, Latorre A, Gosalbes MJ (2013) Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PLoS One 8:e80201. doi:10.1371/journal.pone.0080201

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  48. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275

    Article  CAS  PubMed  Google Scholar 

  49. Ivey KL, Hodgson JM, Kerr DA, Lewis JR, Thompson PL, Prince RL (2014) The effects of probiotic bacteria on glycaemic control in overweight men and women: a randomised controlled trial. Eur J Clin Nutr 68:447–452. doi:10.1038/ejcn.2013.294

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zatollah Asemi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

For Studies with Human Subjects

All procedures in selected papers followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all patients for being included in the study.

Funding

The current study was founded by a grant from the Vice Chancellor for Research, KUMS, in Iran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabrizi, R., Moosazadeh, M., Lankarani, K.B. et al. The Effects of Synbiotic Supplementation on Glucose Metabolism and Lipid Profiles in Patients with Diabetes: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Probiotics & Antimicro. Prot. 10, 329–342 (2018). https://doi.org/10.1007/s12602-017-9299-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9299-1

Keywords

Navigation